<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle18
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal">I would suggest formulating it as a quadratic unconstrained binary optimization problem and using a D-Wave quantum annealer to solve it!
<o:p></o:p></p>
<p class="MsoNormal">You can get some free time here https://cloud.dwavesys.com.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div style="border:none;border-top:solid #B5C4DF 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b><span style="font-size:12.0pt;color:black">From: </span></b><span style="font-size:12.0pt;color:black">Friam <friam-bounces@redfish.com> on behalf of cody dooderson <d00d3rs0n@gmail.com><br>
<b>Reply-To: </b>The Friday Morning Applied Complexity Coffee Group <friam@redfish.com><br>
<b>Date: </b>Friday, November 2, 2018 at 10:23 AM<br>
<b>To: </b>The Friday Morning Applied Complexity Coffee Group <friam@redfish.com><br>
<b>Subject: </b>[FRIAM] gerrymandering algorithm question<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<div>
<div>
<p class="MsoNormal">The other day a puzzle about gerrymandering was shown to me. It is on the web at
<a href="https://fivethirtyeight.com/features/rig-the-election-with-math/">https://fivethirtyeight.com/features/rig-the-election-with-math/</a> . The 5x5 puzzle is doable by hand but the 14x10 seems too complex, and ripe for some computer assistance. What kind
of algorithm would people use for it? Is there an optimal way to gerrymander the entire country?<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">In order to qualify this question as complex or philosophical enough for FRIAM, maybe i should speculate about how I think that ranked choice voting would be better in terms of gerrymandering than what we currently use. My gut instinct
is that ranked-choice would be less predictable and could possibly deter the gerrymanderers. <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<p class="MsoNormal"><br clear="all">
<o:p></o:p></p>
<div>
<div>
<div>
<p class="MsoNormal">Cody Smith<o:p></o:p></p>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>