<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.apple-converted-space
{mso-style-name:apple-converted-space;}
span.EmailStyle19
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal">Eric writes:<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><span style="color:black">< 4. The values of those microscopic observables can evolve jointly with values of more complicated large-actor observables that we describe as apparatus measuring spins etc., and the branches of the large-actor
state vector can evolve to have no coherence; but that evolution is still all under the same local Hamiltonian. ></span><o:p></o:p></p>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<p class="MsoNormal"><<span style="color:black"> There is no instantaneous dynamics that “creates” these correlations at the time of the measurement, the presence or absence of correlations was generated as a feature of the state vector, locally, when the EPR
pair was produced, and they evolved locally with consequences for the possible correlations among macro-actors since. I guess whether this bothers you depends on whether you view the phases over which one averages to compute the coherence or decoherence as
“properties” somehow of degrees of freedom at distinct locations.<span class="apple-converted-space"> </span></span><span class="apple-converted-space"> ><o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Being a gearhead, I look at from the perspective of a distributed computing problem. Classical supercomputers are limited in their effective size by the speed of light. If it takes longer to share a computation result than to do it
locally, then there’s no point in scaling out. Here we have new rules where the local Hamiltonian can be copied elsewhere without a cost. It’s like having an infinite dimensional communication fabric. (Assuming it was possible to engineer a system where
one could isolate or outrun entanglement with the environment and assuming that measurement could be deferred until the desired evolution had completed.)
<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Marcus<o:p></o:p></p>
</div>
</body>
</html>