<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Frank -<br>
    </p>
    <blockquote type="cite"
cite="mid:CAA5dAfroC4e4rZox8UJQ8QnDDCZci5nv1aLk4XjZbLieGHcxuA@mail.gmail.com">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <div dir="ltr">Clinicians often call that "being oppositional".  <br>
      </div>
    </blockquote>
    <p>I think "oppositional" is one *motive* for contrarianism, and
      maybe contrarianism is one *mode* of being oppositional?  I'm far
      from up on the clinical definitions, and my own *contrarianism*
      tends toward nitpicking and hairsplitting (this is an example of
      that?), for what *I perceive* to be removing minor occlusions
      incurred by the specific point of view that a specific word
      (especially drawn from a highly specialized lexicon like DSM2?)
      creates.   <br>
    </p>
    <p>I don't remember if you were actively tracking/participating
      "back in the day" when Doug was (hyper?) active here and his last
      words were (probably paraphrasing mildly but I hope capturing the
      essence) "Glen, you can be SUCH an a****** sometimes!" which
      shocked but did not surprise me.   (these were, I'm pretty sure
      literally his last words on the list, but not his last words in
      life, which I hope I can get out of Ingrun someday, though it will
      probably involve sharing a full bottle of scotch...  a taste all
      three of us shared, but with differing levels of quality/price
      amongst us... anecdotes abound).  <br>
    </p>
    <p>Back to the anecdote at hand...   *I* didn't find whatever Glen
      had said (it is all in the record but I have a sort of
      anti-nostalgia that keeps me from digging it out) as him "being an
      a*******" but rather simply being *contrarian*....   Doug (IMO)
      was generally pretty *oppositional* himself (if my read on the
      term is at all appropriate) so Glen's contrarian style (which is
      only one of his modes) was received by Doug *as* oppositional (in
      the extreme?).   *I* thought Glen was just sparring with Doug in
      the mode I think he spars with everyone here from time to time.  I
      didn't get the word for some weeks after that incident, but it was
      Ingrun who shut down his FriAM access (not literally).  She put
      her German foot down that  Doug had "done his time" with his LANL
      Blogs which were probably more of an outlet than an irritation.  I
      don't know what she threatened him with, but I'm sure it was the
      same tone of voice I'd heard more than a few times, and it started
      with a slightly elevated in volume, but pitched slightly lower in
      tone "Douglas! .... "    He went back to gaming the stock market,
      talking to his birds and cats, gathering peacock feathers from
      their property in Nambe, having his knees replaced, riding his
      motorcycle, playing Sax with one or two bands in town, and rigging
      up media servers from Raspberry Pis.<br>
    </p>
    <p>FriAM was definitely a source of morbid (irritation) fascination
      for Doug, from our private conversations...  It is definitely a
      morbid fascination for me as well, but not particularly irritating
      nor frustrating (with a few very minor/fleeting exceptions).   I
      never learned to play well with others as a child (or a teen)... 
      I learned to move semi-fluidly between cliques and "pass" in most
      of them if needed, but I almost always had to either minimize my
      engagement or eventually "fire myself" from the clique because I
      could feel the cognitive dissonance/mismatch.   My cohorts through
      12th grade probably remember me as a mildly "odd duck" but not to
      the extreme some of you here probably find me.   Here, I trust
      that most can (and do) simply click <next> or <delete>
      and that a few choose to skim, while others find a germ of
      interest if not truth in my ramblings.  For the more
      sophisticated, there are mailtools that would automatically route
      me to a spam (or similar) folder.<br>
    </p>
    <blockquote type="cite"
cite="mid:CAA5dAfroC4e4rZox8UJQ8QnDDCZci5nv1aLk4XjZbLieGHcxuA@mail.gmail.com">
      <div dir="ltr">
        <div>You say that I've known authorities.  I was just talking to
          John Baez about my advisor Errett Bishop, often called the
          inventor of constructive mathematics</div>
      </div>
    </blockquote>
    One of the great boons of this list for me is to flesh out (in my
    mind) the intellectual/social networks of influence that impinge
    here.  You and I have shared our "Erdos" numbers which I understand
    to be nearly irrelevant by many measures, but nevertheless "of
    interest" in *this* regard.   Your Erdos number of 1 (as his
    habitual bouncer from the UCB library in grad school?) is similar to
    a friend of mine whose Bacon number is 1 because his old pickup
    truck was enlisted on-set for the bad SciFi movie "Worms", and
    Bacon's stunt double wasn't on set (and Kevin couldn't drive stick)
    when the director was  ready to film the scene, so my friend
    *played* Bacons character for a few seconds as his old pickup
    careened through a scene.   I in turn "stood in" in a play my
    friend's wife wrote and directed in which he *also* stood in while
    trying to develop it as a film.   I believe the film *was* finally
    made (not a major release or even screened at any indie festivals
    except maybe here in SF) so when pressed I like to claim a Bacon
    number of 2 (thin as it is).<br>
    <blockquote type="cite"
cite="mid:CAA5dAfroC4e4rZox8UJQ8QnDDCZci5nv1aLk4XjZbLieGHcxuA@mail.gmail.com">
      <div dir="ltr">
        <div>.  Here is a constructive proof, with no use of the
          excluded middle, of the irrationality of sqrt(2) that I found
          in Wikipedia.  Apologies to those who don't care:</div>
        <div><br>
        </div>
        <div>
          <p style="margin:0.5em
            0px;color:rgb(32,33,34);font-family:sans-serif"><font
              size="1">In a constructive approach, one distinguishes
              between on the one hand not being rational, and on the
              other hand being irrational (i.e., being quantifiably
              apart from every rational), the latter being a stronger
              property. Given positive integers <span
                class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><i>a</i></span> and <span
                class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><i>b</i></span>,
              because the <a
                href="https://en.wikipedia.org/wiki/Singly_and_doubly_even#Definitions"
                title="Singly and doubly even"
                style="text-decoration-line:none;color:rgb(11,0,128);background:none"
                moz-do-not-send="true">valuation</a> (i.e., highest
              power of 2 dividing a number) of <span
                class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap">2<i>b</i><sup
                  style="line-height:1">2</sup></span> is odd, while the
              valuation of <span class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><i>a</i><sup
                  style="line-height:1">2</sup></span> is even, they
              must be distinct integers; thus <span
                class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap">|<span
                  class="gmail-nowrap"
                  style="padding-left:0.1em;padding-right:0.1em">2<i>b</i><sup
                    style="line-height:1">2</sup> − <i>a</i><sup
                    style="line-height:1">2</sup></span>| ≥ 1</span>.
              Then<sup id="gmail-cite_ref-17" class="gmail-reference"
                style="line-height:1;unicode-bidi:isolate;white-space:nowrap"><a
href="https://en.wikipedia.org/wiki/Square_root_of_2#cite_note-17"
                  style="text-decoration-line:none;color:rgb(11,0,128);background:none"
                  moz-do-not-send="true">[17]</a></sup></font></p>
          <dl
style="margin-top:0.2em;margin-bottom:0.5em;color:rgb(32,33,34);font-family:sans-serif">
            <dd
              style="margin-left:1.6em;margin-bottom:0.1em;margin-right:0px"><span
                class="gmail-mwe-math-element"><font size="1"><span
                    class="gmail-mwe-math-mathml-inline
                    gmail-mwe-math-mathml-a11y"
                    style="display:none;overflow:hidden;width:1px;height:1px;opacity:0">{\displaystyle
                    \left|{\sqrt {2}}-{\frac {a}{b}}\right|={\frac
                    {|2b^{2}-a^{2}|}{b^{2}\left({\sqrt {2}}+{\frac
                    {a}{b}}\right)}}\geq {\frac {1}{b^{2}\left({\sqrt
                    {2}}+{\frac {a}{b}}\right)}}\geq {\frac
                    {1}{3b^{2}}},}</span><img
src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641b9e87f603636755874eee6c5d85875f907483"
                    class="gmail-mwe-math-fallback-image-inline"
                    alt="{\displaystyle \left|{\sqrt {2}}-{\frac
                    {a}{b}}\right|={\frac
                    {|2b^{2}-a^{2}|}{b^{2}\left({\sqrt {2}}+{\frac
                    {a}{b}}\right)}}\geq {\frac {1}{b^{2}\left({\sqrt
                    {2}}+{\frac {a}{b}}\right)}}\geq {\frac
                    {1}{3b^{2}}},}" style="border: 0px; vertical-align:
                    -4.505ex; display: inline-block; width: 50.681ex;
                    height: 8.509ex;" moz-do-not-send="true"></font></span></dd>
          </dl>
          <p style="margin:0.5em
            0px;color:rgb(32,33,34);font-family:sans-serif"><font
              size="1">the latter inequality being true because it is
              assumed that <span class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><span
                  class="gmail-sfrac gmail-nowrap gmail-tion"
                  style="display:inline-block;vertical-align:-0.5em;text-align:center"><span
                    class="gmail-num"
                    style="display:block;line-height:1em;margin:0px
                    0.1em"><i>a</i></span><span class="gmail-slash
                    gmail-visualhide"
                    style="width:1px;height:1px;overflow:hidden">/</span><span
                    class="gmail-den"
                    style="display:block;line-height:1em;margin:0px
                    0.1em;border-top:1px solid"><i>b</i></span></span> ≤
                3 − <span class="gmail-nowrap">√<span
                    style="border-top:1px solid;padding:0px 0.1em">2</span></span></span> (otherwise
              the quantitative apartness can be trivially established).
              This gives a lower bound of <span class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><span
                  class="gmail-sfrac gmail-nowrap gmail-tion"
                  style="display:inline-block;vertical-align:-0.5em;text-align:center"><span
                    class="gmail-num"
                    style="display:block;line-height:1em;margin:0px
                    0.1em">1</span><span class="gmail-slash
                    gmail-visualhide"
                    style="width:1px;height:1px;overflow:hidden">/</span><span
                    class="gmail-den"
                    style="display:block;line-height:1em;margin:0px
                    0.1em;border-top:1px solid">3<i>b</i><sup
                      style="line-height:1">2</sup></span></span></span> for
              the difference <span class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap">|<span
                  class="gmail-nowrap"
                  style="padding-left:0.1em;padding-right:0.1em"><span
                    class="gmail-nowrap">√<span style="border-top:1px
                      solid;padding:0px 0.1em">2</span></span> − <span
                    class="gmail-sfrac gmail-nowrap gmail-tion"
                    style="display:inline-block;vertical-align:-0.5em;text-align:center"><span
                      class="gmail-num"
                      style="display:block;line-height:1em;margin:0px
                      0.1em"><i>a</i></span><span class="gmail-slash
                      gmail-visualhide"
                      style="width:1px;height:1px;overflow:hidden">/</span><span
                      class="gmail-den"
                      style="display:block;line-height:1em;margin:0px
                      0.1em;border-top:1px solid"><i>b</i></span></span></span>|</span>,
              yielding a direct proof of irrationality not relying on
              the <a
                href="https://en.wikipedia.org/wiki/Law_of_excluded_middle"
                title="Law of excluded middle"
                style="text-decoration-line:none;color:rgb(11,0,128);background:none"
                moz-do-not-send="true">law of excluded middle</a>; see <a
                href="https://en.wikipedia.org/wiki/Errett_Bishop"
                title="Errett Bishop"
                style="text-decoration-line:none;color:rgb(11,0,128);background:none"
                moz-do-not-send="true">Errett Bishop</a> (1985, p. 18).
              This proof constructively exhibits a discrepancy between <span
                class="gmail-texhtml"
style="font-feature-settings:"lnum","tnum","kern"
                0;font-variant-numeric:lining-nums
                tabular-nums;font-kerning:none;font-family:"Nimbus
                Roman No9 L","Times New
                Roman",Times,serif;line-height:1;white-space:nowrap"><span
                  class="gmail-nowrap">√<span style="border-top:1px
                    solid;padding:0px 0.1em">2</span></span></span> and
              any rational.</font></p>
        </div>
      </div>
    </blockquote>
    <p>This is the chewy nougat of FriAM for me... stuff outside my
      specific interest but within the liminal boundaries of my ken
      otherwise.  <br>
    </p>
    <p>I don't read FriAM because it feeds the things I am most
      interested in, I read it because it expands the things I am
      interested in (or reminds me of things I forgot I was interested
      in).   <br>
    </p>
    <p>- Sieve<br>
    </p>
  </body>
</html>