<div dir="auto">Excellent, Jon.<div dir="auto"><br></div><div dir="auto">On that basis, in answer to Nick's claim that I have never seen a right triangle, here's a classic one</div><div dir="auto"><br></div><div dir="auto">{(0, 0), (1,0), (0,1)}</div><div dir="auto"><br></div><div dir="auto">and here's a manifold </div><div dir="auto"><br></div><div dir="auto">{(x,y,z) in R^3: x*x+y*y+z*z = 1} where the open sets are the open sets of S^2.</div><div dir="auto"><br></div><div dir="auto">Note these are not physical objects.<br><br><div data-smartmail="gmail_signature" dir="auto">---<br>Frank C. Wimberly<br>140 Calle Ojo Feliz, <br>Santa Fe, NM 87505<br><br>505 670-9918<br>Santa Fe, NM</div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, May 29, 2020, 11:17 AM Jon Zingale <<a href="mailto:jonzingale@gmail.com">jonzingale@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">Frank, Steve,</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">My favored approach is to say that <i>space is like a manifold</i>.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">For me, space is a <i>thing</i> and a manifold is an <i>object</i>. The former</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">I can experience free from my models of it, I can continue to</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">learn facts(?) about space not derived by deduction alone</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">(consider Nick's posts on inductive and abductive reasoning).</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">I concede here that we talk about an objectified space, but</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">I am not intending to. I am using the term space as a place-</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">holder for the thing I am physically moving about in. OTOH</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">manifolds are fully <i>objectified</i>, they exist by virtue of their</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">formality. Any meaningful question <i>about a manifold</i> itself</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">is derived deductively from its construction. Neither in their</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">own right are metaphors, the metaphor is created when we</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">treat space <i>as if it were</i> a manifold. Just my two cents.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">At the beginning of MacLane's <i>Geometrical Mechanics,</i> (a book</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">I have held many times, but never found an inexpensive copy</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">to buy) MacLane opens his lecture's with '<i>The slogan is: Kinetic</i></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><i>energy is a Riemann metric on configuration space</i>'. What a baller.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333">Glen,</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><br></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">I love that you mention the </span><font face="monospace"><placeholder></font><font face="verdana, sans-serif">, ultimately reducing</font></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><font face="verdana, sans-serif">the argument to a <i>snowclone</i>. Because the title of the </font><span style="font-family:verdana,sans-serif">thread</span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">actually </span><span style="font-family:verdana,sans-serif">implicates a discussion of metaphor, and </span><span style="font-family:verdana,sans-serif">because I may</span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">have </span><span style="font-family:verdana,sans-serif">missed your point about </span><i style="font-family:verdana,sans-serif">xyz,</i><span style="font-family:verdana,sans-serif"> please allow me this question.</span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">Do you feel </span><font face="verdana, sans-serif">that </font><i style="font-family:verdana,sans-serif">snowclones</i><span style="font-family:verdana,sans-serif"> are necessarily </span><span style="font-family:verdana,sans-serif">templates for making</span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">metaphors, </span><span style="font-family:verdana,sans-serif">or do you feel that </span><span style="font-family:verdana,sans-serif">a snowclone is somehow different?</span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif"><br></span></div><div class="gmail_default" style="font-size:small;color:rgb(51,51,51)"><span style="font-family:verdana,sans-serif">Jon</span></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:#333333"><br></div></div>
-- --- .-. . .-.. --- -.-. -.- ... -..-. .- .-. . -..-. - .... . -..-. . ... ... . -. - .. .- .-.. -..-. .-- --- .-. -.- . .-. ...<br>
FRIAM Applied Complexity Group listserv<br>
Zoom Fridays 9:30a-12p Mtn GMT-6 <a href="http://bit.ly/virtualfriam" rel="noreferrer noreferrer" target="_blank">bit.ly/virtualfriam</a><br>
un/subscribe <a href="http://redfish.com/mailman/listinfo/friam_redfish.com" rel="noreferrer noreferrer" target="_blank">http://redfish.com/mailman/listinfo/friam_redfish.com</a><br>
archives: <a href="http://friam.471366.n2.nabble.com/" rel="noreferrer noreferrer" target="_blank">http://friam.471366.n2.nabble.com/</a><br>
FRIAM-COMIC <a href="http://friam-comic.blogspot.com/" rel="noreferrer noreferrer" target="_blank">http://friam-comic.blogspot.com/</a> <br>
</blockquote></div>