<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/xhtml; charset=utf-8">
</head>
<body>
<div style="font-family:sans-serif"><div style="white-space:normal"><p dir="auto">I think I have a counterexample, if such things exist when discussing probability.</p>
<p dir="auto">The US presidential election with the highest turnout (81.8%, as a percentage of the voting age population) was the Tiden-Hayes election of 1876. It is also the smallest electoral vote victory (185-184). The winner of the popular vote (by 3%) did not win the election. The result ultimately came from a back, presumably smoky, room.</p>
<p dir="auto">—Barry</p>
<p dir="auto">On 28 Oct 2020, at 19:19, uǝlƃ ↙↙↙ wrote:</p>
<blockquote style="border-left:2px solid #777; color:#777; margin:0 0 5px; padding-left:5px"><p dir="auto">From:<br>
<br>
<a href="https://www.electoral-vote.com/evp2020/Pres/Maps/Oct28.html#item-7" style="color:#777">https://www.electoral-vote.com/evp2020/Pres/Maps/Oct28.html#item-7</a><br>
"6. High turnout makes razor-thin victories, like the ones Trump notched in Michigan, Wisconsin, and Pennsylvania in 2016, much less likely."<br>
<br>
Is that true? I've always heard that tight races lead to higher turnout, which would imply that high turnout would correlate WITH thin victories, not against them.<br>
<br>
-- <br>
↙↙↙ uǝlƃ<br>
<br>
- .... . -..-. . -. -.. -..-. .. ... -..-. .... . .-. .<br>
FRIAM Applied Complexity Group listserv<br>
Zoom Fridays 9:30a-12p Mtn GMT-6 bit.ly/virtualfriam<br>
un/subscribe <a href="http://redfish.com/mailman/listinfo/friam_redfish.com" style="color:#777">http://redfish.com/mailman/listinfo/friam_redfish.com</a><br>
archives: <a href="http://friam.471366.n2.nabble.com/" style="color:#777">http://friam.471366.n2.nabble.com/</a><br>
FRIAM-COMIC <a href="http://friam-comic.blogspot.com/" style="color:#777">http://friam-comic.blogspot.com/</a></p>
</blockquote></div>
</div>
</body>
</html>