<div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:#000000">You may be interested in my <a href="https://drive.google.com/file/d/1dKv7Dt_2pO1OlUL7BesB31FyjpCsO_2E/view?usp=sharing" style="font-family:Arial,Helvetica,sans-serif">Minds and Machines</a> (also Springer) paper on the same subject.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:#000000"><br></div><blockquote style="margin:0 0 0 40px;border:none;padding:0px"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:#000000"><b>The Bit (and Three Other Abstractions) Defne
the Borderline Between Hardware and Software </b></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:#000000"> <b><br></b></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:#000000"><b>Abstract
</b>Modern computing is generally taken to consist primarily of symbol manipulation.
But symbols are abstract, and computers are physical. How can a physical device
manipulate abstract symbols? Neither Church nor Turing considered this question.
My answer is that the bit, as a hardware-implemented abstract data type, serves as
a bridge between materiality and abstraction. Computing also relies on three other
primitive—but more straightforward—abstractions: Sequentiality, State, and Transition. These physically-implemented abstractions define the borderline between hardware and software and between physicality and abstraction. At a deeper level, asking
how a physical device can interact with abstract symbols is the wrong question. The
relationship between symbols and physical devices begins with the realization that
human beings already know what it means to manipulate symbols. We build and
program computers to do what we understand to be symbol manipulation. To understand what that means, consider a light switch. A light switch doesn’t turn a light
on or off. Those are abstractions. Light switches don’t operate with abstractions. We
build light switches (and their associated circuitry) so that when flipped, the world
is changed in such a way that we understand the light to be on or of. Similarly, we
build computers to perform operations that we understand as manipulating symbols. </div></blockquote><font color="#000000" face="arial, helvetica, sans-serif"><div><font color="#000000" face="arial, helvetica, sans-serif"><br></font></div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small;color:rgb(0,0,0)">In other words, it's all in our minds.</span><br></font><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><font><u style="color:rgb(33,33,33);font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:16.5px;line-height:20px"><br></u></font></div><div dir="ltr"><font><u style="color:rgb(33,33,33);font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:16.5px;line-height:20px"> </u></font><span style="color:rgb(33,33,33);font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:16.5px;line-height:24.75px"> </span>-- Russ Abbott <br>Professor, Computer Science<br>California State University, Los Angeles<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sat, Nov 7, 2020 at 9:35 AM jon zingale <<a href="mailto:jonzingale@gmail.com">jonzingale@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">This work does seem to be relevant, up to 𝜀-equivalence, to many of the<br>
fibers in recent threads :) As the authors point out, the question of<br>
deciding which diagrams 𝜀-commute is the business of experimental science à<br>
la EricC's commentary on the history of chemistry. Also, the ideas expressed<br>
in this paper appear to point in a similar direction to the<br>
(model-theoretic) ideas I was attempting to land in the *downward-causation*<br>
discussion from last week. Lastly, the thesis is related to questions of how<br>
extensional (or purely-functional) computation arises from the intentional<br>
(maximally-stateful) variations of a substrate. So, thanks.<br>
<br>
𝜀-equivalence itself is interesting because it comes with a *competence<br>
constraint* that prevents it from being a transitive relation, that in<br>
general a =𝜀 b ^ b =𝜀 c ⊬ a =𝜀 c is crucial to the theory. In other<br>
words, while there may be a wide range of arm shapes that can be used as<br>
bludgeons, one can evolve themselves out of the sweet spot. Dually, the<br>
𝜀-equivalence condition provides a route to modeling *exaptation*, via<br>
modal possibility. As p's belonging to the Physical domain vary, images in<br>
the abstract theory vary into or out of 𝜀-equivalence with values belonging<br>
to other problem domains. In particular, if we imagine that the R-map in the<br>
paper is *actually* a structural functor as it seems to imply, we can<br>
imagine another functor R' which specifies yet another problem space.<br>
Natural transformations then, up to 𝜀-equivalence, provide a model of<br>
exaptation. Because of the experimental nature of 𝜀-equivalence, I suspect<br>
we would slowly discover an underlying Heyting algebra which would extend to<br>
a topos via studying relations on sieves of 𝜀-equivalent structures. This<br>
approach would formalize *how far from competent* a structure is wrt<br>
*proving* a particular computation.<br>
<br>
<br>
<br>
--<br>
Sent from: <a href="http://friam.471366.n2.nabble.com/" rel="noreferrer" target="_blank">http://friam.471366.n2.nabble.com/</a><br>
<br>
- .... . -..-. . -. -.. -..-. .. ... -..-. .... . .-. .<br>
FRIAM Applied Complexity Group listserv<br>
Zoom Fridays 9:30a-12p Mtn GMT-6 <a href="http://bit.ly/virtualfriam" rel="noreferrer" target="_blank">bit.ly/virtualfriam</a><br>
un/subscribe <a href="http://redfish.com/mailman/listinfo/friam_redfish.com" rel="noreferrer" target="_blank">http://redfish.com/mailman/listinfo/friam_redfish.com</a><br>
archives: <a href="http://friam.471366.n2.nabble.com/FRIAM-COMIC" rel="noreferrer" target="_blank">http://friam.471366.n2.nabble.com/<br>
FRIAM-COMIC</a> <a href="http://friam-comic.blogspot.com/" rel="noreferrer" target="_blank">http://friam-comic.blogspot.com/</a> <br>
</blockquote></div>