<div dir="ltr">Yes, I have been using the sklearn random forest and other ensemble methods at SigmaLabsInc. I can't tell you too much because it is proprietary, but we downsample the normal pixels some, upsample the anomalies some, and apply class weights to complete the balance.<div><br></div><div>We wrote a white paper that is available here</div><div><a href="https://sigmalabsinc.com/machine-learning-a-game-changer-for-additive-manufacturing/">https://sigmalabsinc.com/machine-learning-a-game-changer-for-additive-manufacturing/</a><br></div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Aug 29, 2021 at 2:08 PM Jon Zingale <<a href="mailto:jonzingale@gmail.com">jonzingale@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)">I am presently working on learning <a href="https://arxiv.org/pdf/1906.00856.pdf" target="_blank">weighted ensemble</a> sampling techniques and was curious if any here have worked with them before. The technique seems promising and has enjoyed quite a bit of success (even above <a href="https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo" target="_blank">MCMC</a>) in circles concerned with reaction rates for rare events.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)">Some points of interest for me include:</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)"><ol><li>A better sampling of fringe-outlier works/art from streaming services.</li><li>An alternative (bin-based sampling) to globally defined "fitness" measures in evolutionary modeling.</li><li>An application of diffusion-limited aggregation to general search (especially in the face of limited resources)</li><li>An application of linear logic to optimization problems in <a href="https://en.wikipedia.org/wiki/Protein_structure_prediction" target="_blank">conformation prediction</a>.</li><li>Investigation of dynamical properties, such as distribution of trajectories with "high winding number", on strange attractors.</li></ol></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)">While I am just beginning to grok the technique, I thought it might be fruitful to ask here.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(51,51,51)">Jon</div></div>
- .... . -..-. . -. -.. -..-. .. ... -..-. .... . .-. .<br>
FRIAM Applied Complexity Group listserv<br>
Zoom Fridays 9:30a-12p Mtn GMT-6 <a href="http://bit.ly/virtualfriam" rel="noreferrer" target="_blank">bit.ly/virtualfriam</a><br>
un/subscribe <a href="http://redfish.com/mailman/listinfo/friam_redfish.com" rel="noreferrer" target="_blank">http://redfish.com/mailman/listinfo/friam_redfish.com</a><br>
FRIAM-COMIC <a href="http://friam-comic.blogspot.com/" rel="noreferrer" target="_blank">http://friam-comic.blogspot.com/</a><br>
archives: <a href="http://friam.471366.n2.nabble.com/" rel="noreferrer" target="_blank">http://friam.471366.n2.nabble.com/</a><br>
</blockquote></div>