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At first the operators transform the functions, then the 
functions transform the operators. 

William Clifford wrote, in Common Sense of the Exact 
Sciences, that sometimes in algebra we ask a question 
that has no answer: “If we write down the symbols for 
the answer to the question in cases where there is no 
answer and then speak of them as if they meant some-
thing, we shall talk nonsense. But the nonsense is not to 
be thrown away as useless rubbish. We have learned by 
very long and varied experience that nothing is more 
valuable than the nonsense we get in this way...We turn 
the nonsense into sense by giving a new meaning to the 
words or symbols which shall enable the question to 
have an answer, that previously had no answer.” (Quot-
ed by Alexander Macfarlane “The fundamental princi-
ples of algebra,” Aug 21, 1898, AAAS).

Say you’re in some math course, and you are handed 
these problems

(1)    Solve y′′ + y′ − 2y = f .
(2)    Solve du/dt = Au, where A  is a 5-by-5 matrix  
         with complex entries.
(3a)  Solve ut = ux, given u(0, x).
(3b)  Solve utt = c2uxx, given u(0, x) and
         ut(0, x).
(3c)  Solve ut(t, x) = uxx(t, x) for t > 0, given
         u(0, x).

To solve all of these problems, I will show you a secret 
two-step method. First, treat mathematical symbols like 
A  or D  as if they were numbers, and get “solutions” 
which are meaningless nonsense

(1)    y = f/(D2
+D − 2). 

(2)    u(t) = etAu(0).
(3a)  u(t, x) = etDu(0, x), where D = d/dx.
(3b)  u(t, x) = ectD+f(x) + ectD−g(x), where
         D+ = d/dx, D− = −d/dx  and f  and g  
         are “arbitrary”.
(3c) u(t, x) = etQu(0, x) where Q = (d/dx)2.

Then figure out the meaning of this meaningless non-
sense.

Example 1, sometimes taught in introductory ODE, is 
usually misattributed to the telephone engineer Oliver 

Heaviside, but it was written down before Heaviside by 
a forgotten algebraist, George Peacock. He was a mem-
ber of the Analytical Society, along with Charles Bab-
bage, and contemporary to William Rowan Hamilton 
and George Boole. Peacock stated the following “princi-
ple or law of the permanence of equivalent forms” in his 
1830 Treatise of Algebra: “Whatever form is Algebrai-
cally equivalent to another, when expressed in general 
symbols, must be true, whatever those symbols denote.”  
This vague principle can be proved as a theorem in sev-
eral ways. As we shall see, it is a principle that will serve 
us well.

Example 2 is in a beautiful, seldom taught chapter of 
linear algebra: “Functions of Matrices”.

Examples 3a, 3b, and 3c are “the initial-value prob-
lem” for the “transport equation,” the “wave equation,” 
and the “heat equation”. Such problems are sometimes 
solved in graduate school as applications of “Banach al-
gebra” or “symmetric linear operator on Hilbert space”. 
Those “modern methods” actually are pumped up ver-
sions of the symbolic method, which we are first going 
to see in matrices and simple ODE’s.

Perhaps a good way to illustrate the transmutation idea 
(and in fact the whole symbolic method) is with a com-
mutative arrow diagram from universal algebra

You start at A with a PDE in a linear vector space. Go 
across to B with symbolic substitutions for the formu-
las. Find a way to drop down to D with a meaningful 
representation by using the symbols in some familiar 
space such as geometry, algebra, trig, complex plane, 
matrices, some infinite topological space, semi-groups, 
Lie algebras.  This transformation might have a very 
complex commutative diagram of its own.   Go across 
to C by finding a solution in the representation do-
main.  Go back from C across to D checking conver-
gence and validity of the solution in the domain. Finally 
map between the original problem A and the solution 
form C.

In addition to explaining the meanings of the three 

A B

C D
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symbolic answers given above, we will ponder on the 
meaning of “meaning”.

In conclusion, I will offer a couple of contributions of 
my own. First there is “the method of transmutations”, 
where I transform the solution of one operator differ-
ential equation into the solution of another one. Then 
there’s a trick where I produce a stable, convergent dif-
ference scheme of any desired rate of convergence, to 
any well-posed linear initial-value problem.

Boole’s Symbolic Method for 
Simple ODEs
We start with a venerated old operator calculus, com-
monly misattributed to the telephone engineer Oliver 
Heaviside. Basic operations you apply to functions in a 
calculus course are

• D , differentiating: f(t), a distance function, 
goes to f ′

(t), its velocity.
• D−1, anti-differentiating or integrating: 

f(t) goes to a function F (t)  satisfying  
F ′

(t) = f(t).
• Eh, shifting: Ehf(x) = f(x+ h), where h 

is a real number, a “parameter” that can be chosen 
as convenient. Then iterating or repeating, Eh n  
times gives f(x+ nh). Inverting is just shifting 
back to the left. The two basic operators on func-
tions, D  and Eh, are related by a beautiful for-
mula. Taylor’s theorem in calculus can be rewritten 
in operator notation

         f(x+ h) =
∑

hnf (n)
(x)/n!,

becomes

               Ehf(x) =
∑

(hD)
nf(x)/n!,

which we can simplify, dropping the general victim         
“f ”, to 

                        Eh =

∑
(hD)

n/n!

Any student of calculus should recognize the right-hand 
side as the power series of the exponential function 
with base e and “variable” hD . In brief, Eh = ehD  
and furthermore hD = log(Eh). The formula 

hD = log(Eh) opens the way to an approximation 
of D  by powers of Eh, the beginning terms of a se-
ries expansion of the log . That is to say, a higher-order 
approximation of differentiation by higher-order finite 
differences.

These two beautiful formulas connect with and enlight-
en an important practical problem:  discretizing differ-
ential operators.  Getting good workable approxima-
tions using finite differences.

If we move up to functions of 2 or 3 variables, shifting 
leads straight back into matrix theory. And if we divide 
by h after shifting by h, we are doing finite differences 
and almost back to D = d/dt . George Boole, most 
remembered for his logic, wrote a once popular book on 
the calculus of finite differences.

With that general introduction out of the way, we can 
turn to Problem 1 above. We will learn an effective 
elementary technique to solve a linear ordinary dif-
ferential equation with constant coefficients, of arbi-
trarily high order. We are given y′′ + y′ − 2y = f .                                      
The key step is to abandon Newton’s “dot” notation 
for derivatives, and rewrite the equation in Leibnitz’s 
“D” notation: D2y +Dy − 2y = f(t), and 
then to “factor out” the differential operators, thus: 
(D2

+D − 2)y(t) = f(t). Then we must dare 
to write the “solution” in this childish, meaningless 
way, as y = f(t)/(D2

+D − 2), or equivalently
y = (D2

+D − 2)
−1f(t). Then all we have to do 

is to figure out the “meaning” of (D2
+D − 2)

−1.                                                                                             
But if we think of factoring D2

+D − 2  as  
(D + 2)(D − 1), then

1/(D2
+D − 2) = [1/(D + 2)][1/(D − 1)],

or

  (D2
+D − 2)

−1
= (D + 2)

−1
(D − 1)

−1. 

We will be done if we can just invert (D + 2)  and 
(D − 1) , and apply those inverses successively.

But Peacock and Boole and Heaviside showed how to 
make the solution even simpler, for

     1/(D2
+D − 2) = 1/(D + 2)(D − 1) ,

                                 = 1

3
[1/(D − 1)− 1/(D + 2)].
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That is
      (D

2
+D − 2)

−1
=

1

3
[(D − 1)

−1

                                                            − (D + 2)
−1

].

We have written the reciprocal of a product as a sum 
of reciprocals of individual factors, by the method of 
“partial fractions” which we learned as a useful trick in 
integral calculus. Now, instead of having to successively 
invert the factors of D2

+D − 2 , we invert them si-
multaneously, and then add the results. (The very same 
little trick reappears below, in functional calculus, un-
der the impressive name of First and Second Resolvent 
Identities.)

So it all comes down to inverting D − p, for an arbi-
trary number p . To invert D − p - to find (D − p)−1 
- just means, solve the equation y′ − py = f , for “ar-
bitrary” f . But that’s easy! You saw it already in calcu-
lus, then again in introductory ODE. The answer is

                y(x) = epx
(∫

e−pxf(x)dx+ C

)
.

where the “arbitrary constant C ” remains to be de-
termined by some initial condition. So we rewrite 
[1/(D − p)]f  as

                                epx
(∫

e−pxf(x)dx+ C

)
,

and define the inverse, (D − p)−1, as

(D − p)−1f(t) = Cept + ept
∫

e−ptf(t)dt .

In our example

       

y(t) = 1

3

(
C1e

2t
+ e2t

∫
e−2tf(t)dt

                                                         + C2e
−t

+ e−t

∫
etf(t)dt

)
.

In summary

• To invert the product of two operators, multiply 
the inverses of the factors.

• To invert a composite differential operator such as 
(D − p)(D − q)  invert the factors consecu-
tively, to get the inverse of their composite.

To solve Problem 1, we just wrote y(t) as 
(D + 2)

−1
(D − 1)

−1f . This is a successive op-
eration with one inverse operator following another.  
In the same way, any polynomial p(w) with real or 
complex coefficients can be factored into a product of 
first-degree factors (w − wj), and the reciprocal of 
the polynomial p(w) is the product of the reciprocals, 
1/(w − wj). The general problem of solving linear 
constant coefficient ODEs  is thereby reduced to finding 

the meaning of [1/(D − wj)]f . That is the same as 
solving the first order ODE y′ − wjy = f , and we 
do that by a simple calculation using integration by 
parts.  The answer from your calculus course is 

                          y(t) = ept
∫

e−ptf(t)dt+ C ,

(where p = wj). The inverse of the differential poly-
nomial p(D) is the product of the inverses of its fac-
tors D − wj. If the roots are distinct, you can expand 
the composite inverse operator by means of partial frac-
tions, invert each piece, and then just add them up. 

But what about a differential polynomial with a complex 
root? Let’s say it’s i, to make it simple. Looking back at 
what we just did, the problem now comes down to a first 
order DE. with a complex coefficient, y′ + iy = f . 
In the solution formula we copied from calculus, the 
complex number i appears in an exponent. We are back 
to the exponential function we just struggled with, but 
with a complex exponent.

You probably already know that eit = cos t+ i sin t.                                                                                                           
With this interpretation, the inversion we accomplished 
with real roots also makes sense for complex roots. If a 
complex root has nonzero real part r, the exponential 
function in the solution is multiplied by a factor ert .

A careful logical critic of some steps in this derivation 
could demand, “What do you mean by an equality be-
tween two meaningless expressions?” Peacock’s prin-
ciple of permanence of equivalent forms is a heuristic 
principle, not a precise theorem. Our answer might be, 
“We expect in the end to interpret these expressions 
sensibly, and after such an interpretation, the two sides 
will really be equal.”

For real x, the elementary identity 
1/p(x) =

∑
cj/(x− wj), simply “means” that 

p(w)×
∑

cj/(w − wj) = 1. So the “meaning-
less” identity, about a differential polynomial p(D), 
1/p(D) =

∑
cj/(D − wj), can be said to simply 

“mean” p(D)
∑

cj(D − wj)
−1f = f . We don’t 

bother to specify appropriate conditions on f , because 
we can simply “plug this expression into the differential 
equation” to verify that it really is a solution. (We do not 
claim to have found ALL solutions.)

Now we move on to Problem 2.

Functions of Matrices
In Problem 2, we are looking at the letter e with the 
letters tA  attached at its upper right corner. That would 
make sense if the letter A  stood for a number. But what 
entitles us to stick a matrix up there?
  
We first encounter this exponential notation in ele-
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mentary school, with a natural number as exponent. It’s 
just the number of times you multiply the base times 
itself. Then we learn to accept fractional and negative 
exponents, by requiring the exponential function to sat-
isfy the formula eaeb = ea+b . Finally, we can even 
understand an exponent which is a complex number, 
because the power series expansion of the exponential 
equals the sum of the series expansion of the cosine plus 
i times the expansion of the sine.  

Oh, that’s it! We can just take the power series 
ect =

∑
(ct)n/n!  which converges for all values of 

the real or complex variable t, and replace the numeri-
cal coefficient c  with a matrix coefficient A !

Well, why not? (tA)n is easy, we know how to mul-
tiply A  times itself.  Matrix multiplication is not the 
same as numerical multiplication, but it obeys all the 
same axioms, doesn’t it? Oh no, the commutative law 
is false for matrices. But wait! The powers of a single 
fixed matrix do all commute with each other. The n th 
power times the m th is the (m+ n)th power, in ei-
ther order of  multiplication. So the terms of the power 
series still make sense if they are (tA)n/n!  instead of 
(ct)n/n!

But what about convergence? The power series of the 
numerical exponential converges, because the tail of the 
series is very small. Even if ct  is very big, (ct)n/n!  
will be less than the n th power of “epsilon”, for epsilon as 
small as you like, as long as n  is bigger than some M  
(which depends on epsilon). Consequently, the Taylor 
series of the numerical exponential converges because it 
is majorized by a convergent power series.

Does this work for the matrix Taylor series?? Yes! We use 
the beautiful Cayley-Hamilton Theorem: “Any square 
matrix satisfies its own characteristic function.” Mean-
ing, the scalar polynomial p(x) = det(A− x) 
becomes the zero matrix when the scalar variable x is 
replaced by the matrix A . First I will use Cayley-Ham-
ilton, and then I will prove it.

Elementary algebra tells us that if p(w) is a polynomial 
of degree n , and m > n, then wm  can be divided 
by p(w), with a quotient Qm  and a remainder Rm :                                           
wm

= Qm(w)p(w) +Rm(w). The remainder 
Rm  has degree less than n . By Peacock’s principle of 
the permanence of equivalent forms, we can replace w  
by A , and write Am

= Qm(A)p(A) +Rm(A). 
By Cayley-Hamilton, p(A) = 0 , so Am

= Rm(A)
, which is a polynomial in A  of degree less than the 
degree of A . As a consequence, any polynomial in the 
matrix A  can be reduced, term by term, to a polynomi-
al of degree less than n .

To prove the Cayley-Hamilton theorem, remember that 
any n th degree polynomial in a complex variable z  can 
be written as a product of n  linear factors (z − zj).                                                                                                 

Therefore, by Peacock’s principle again, the charac-
teristic polynomial of A  can be factored into a prod-
uct of n  linear factors (A− zj), 1 ≤ j ≤ n . The 
roots wj of p  are the “eigenvalues” of A . Each factor 
(A− wjI) annihilates a corresponding j th eigenvec-
tor. If the eigenvalues are distinct, the eigenvectors span 
the space, and p(A) annihilates every vector in the 
space, so it must be the zero matrix. (If there is a double 
root of p , there is a corresponding 2-space that is anni-
hilated, and so on). The proof is complete.

When we write down the exponential function etA , we 
expect and require it to satisfy two fundamental iden-
tities: d/dt ectA = cAectA , and eA+B

= eAeB .                                                                                                    
The validity of these formulas for the matrix exponen-
tial, written as power series, follows by a simple argu-
ment from their validity term by term for the power 
series of the scalar exponential. This is part of Peacock’s 
“principle of permanence of equivalent forms.” We will 
spell it out in detail.

Theorem 1: If the function etA  is defined by the 
power series for the scalar exponential function, then 
d/dt etA = AetA . If the two n-by-n  matrices A  
and B  satisfy AB = BA , then eAeB = eA+B .
Proof: Since the numerical exponentials ex and ey 
satisfy the two proposed identities, their power series 
when multiplied term by term  or differentiated term-
by-term satisfy those identities, that means that the co-
efficients of the n th power on both sides of the “equals 
sign” are the same, for all n . But then the two series 
will be identical if instead of numerical variables x and 
y , any other symbols are substituted which satisfy the 
same rules for addition and multiplication.

The reasoning we have used regarding the exponential 
function works just as well for ANY square matrix, and 
ANY function represented by a power series (any “ana-
lytic function.”) The resulting matrix-valued function of 
matrices will satisfy any identity satisfied by the original 
analytic function of a real or complex variable. For in-
stance, all of the multitude of trigonometric identities, 
which originate in reasoning about triangles and circles, 
continue to be valid for the complex functions sin z  
and cos z ,  and continue to be valid as matrix-valued 
functions of arbitrary matrices, as long as all the matri-
ces in any formula are mutually commutative (as will be 
true if they are all functions of one matrix A). 

The identities are  valid for all z  and A , even if the 
series is convergent only in a bounded region of the z  
plane. This is an important example of Peacock’s princi-
ple of permanence of equivalent form.

Complex numbers are included, because complex num-
bers z = a+ bi  can be represented by special two-
by- two matrices  aI + bJ , where I  is the 2-by-2 
identity, and J  is 
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(
0 1

−1 0

)
.

This is wonderful magic, and it’s too good to be true, at 
least too good to be true always. The symbolic method 
can lead to disaster. A bit of caution is required! Multi-
ple-valued functions are dangerous. The very simplest 
one, the square root, applied to the 2-by-2 identity ma-
trix, takes on not two but four values. (Just put plus-or-
minus signs in front of the two 1’s in the identity matrix, 
to display its four square roots.)

Once we feel comfortable with power series of matrices, 
we naturally ask, what other functions besides the ex-
ponential can we compute by power series? The inverse 
function is a tempting example. The very simplest prob-
lem in linear algebra, solving a system of linear equations, 
is nothing more than finding the inverse of a given square 
matrix. And the very first power series that you met 
in school was 1 + x+ x2 + · · · = 1/(1− x).                                                                                                               
1/(1− x) is the multiplicative inverse of 1− x, so 
if we replace x by A , we must get the inverse of the 
matrix I −A . (“I ” of course means the n-by-n  
identity matrix). To check this out, take a very simple  
example. Choose A  as a scalar diagonal matrix, with 
all entries on the main diagonal equal to 10, and all 
off-diagonal entries zero. Then I −A  is the scalar 
matrix −9, and its inverse is the scalar matrix −1/9.                                                             
So then, is −1/9 the sum of the powers of 10? Does
1 + 10 + 100 + · · · = −1/9???? Nonsense! The 
sum of the powers of 10 diverges. It does not “exist.” The 
supposition that it “exists” is false. It’s no surprise that a 
false conclusion comes from a false hypothesis.

Worse yet, choose as p(B) the identity matrix I .                                                                                                      
Then the sum of powers p(x) would be just 
I + I + I + · · ·, the sum of copies of I . The n th 
partial sum would be nI . But I −X  is just the zero 
matrix, and 1/(I −X)   means “Divide by zero”, so of 
course the series has to diverge.

On the other hand, if the entries in the matrix A  are 
small, then the sum of the powers of A  ought to con-
verge. How small should they be? In the scalar case, you 
probably know that the sum of the powers  xn converg-
es if and only if x is less than 1 in absolute value. What 
is the analogous statement for the sum of the powers of 
a matrix A?  That is your first homework assignment.  

Exercise: For which square matrices of real or complex 
numbers does the power series I +A+A2

+ · · · 
converge?  

You will find it hard to answer this without first stating 
the meaning of “convergence” for a sequence of matri-
ces, and what you would mean by saying a a matrix is 
“smaller” than the identity matrix. Have fun!

It is tempting to try to carry over to the differential op-

erator D  or p(D) the same trick we just saw for in-
verting (some, not all) matrices.  Is D  “small” so that 
the sum of powers of D  will converge to I −D ? No, 
not at all. Saying D  is small, in the appropriate sense 
here, would mean that the powers of D  get small as 
you take higher powers, which can only mean that for 
some sufficiently inclusive class of functions f , the sum 
of f  and all its derivatives is small. That works if f  is 
a polynomial, or even an entire analytic function of 
exponential type. (If you don’t know what that means, 
don’t worry about it, just keep on reading). But we don’t 
want to restrict ourselves only to such “nice” functions. 
The problem itself is meaningful for functions f  that 
are merely differentiable once, or even with sharp cor-
ners here and there. We shouldn’t need derivatives of 
order higher than  the first. So power series in D  is 
not the right way to make sense of 1/(I −D)  or 
1/(p−D). Heaviside’s method is the right way to go.

Another Functional Calculus 
for Matrices
Can we find another interesting class of matrices that 
all commute with each other? Yes! The diagonal ma-
trices, with zeroes in all the off-diagonal positions. A 
function f(A) of a diagonal matrix A  is easy to write 
down - just apply f  separately to each number on the 
main diagonal of A . Of course, that function must be 
well-defined for all the entries on the diagonal of A . 
For example, we can’t define f(A) as A−1 if A  has 
a zero on the main diagonal, which is the same thing as 
saying A  has zero as one of its eigenvalues. A matrix 
with a zero eigenvalue is singular, non-invertible. On 
the other hand, if A  is non-singular, and has an inverse 
A−1, we can write powers of A−1, which give us the 
“Laurent series” of A  itself.  Singularities of f(z) at 
points in the complex plane other than 0 do not inter-
fere.

This method might seem to be of limited interest, since 
diagonal matrices are so special. But starting with the 
diagonal, we can go to a much much bigger class of 
matrices by the relation of similarity (a term used in a 
different way in plane geometry.) We say “A  is similar 
to B ” if there is a non-singular change of variables that 
transforms A  to B , meaning that there is an inverti-
ble matrix P  such that A = P−1BP . In that case, 
any function f(A) (a polynomial function or the limit 
of a convergent sequence of polynomial functions) will 
be similar to f(B). To see this, first consider just the 
squares of A  and B : 

          A2
= (P−1BP )(P−1BP ),

                  = (P−1B)(PP−1
)(BP ),

                  = (P−1B)I(BP ) = P−1B2P ,
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which means exactly that A2 is similar to B2. The 
same calculation repeated n− 1 times will show that 
An is similar to Bn. for all n , by the same transfor-
mation P  and P−1. 

Also, if A  is similar to C , and B  is similar to D  by 
the same transformation P  and P−1, then A+B  is 
similar to C +D . Therefore by addition, p(A), any 
polynomial function of A , is similar to p(B). Going 
over to limits by continuity, we end up being able to ap-
ply irregular functions such as step functions, piecewise 
linear functions, etc, to any B  which is similar to some 
diagonal matrix A .

Symmetric and skew-symmetric matrices turn out to 
be similar to diagonal ones. The entries on the diagonal 
matrix A  are just the eigenvalues or characteristic val-
ues of B , the solutions of the characteristic equation.

So we have two different “functional calculi” for matri-
ces. For any analytic function f , and any square matrix 
A , the Taylor series of f  gives us an interpretation of 
f(A). On the other hand, if A  is similar to a diagonal 
matrix (A  is symmetric, skew-symmetric, “normal”, or 
has n distinct eigenvalues) then all we require from f  is 
to be defined on the diagonal elements of D , which are 
simply the eigenvalues or the spectrum of A . No con-
ditions of regularity or boundedness on f  are needed!

In both of these two functional calculi, any identity 
satisfied by p(x) is also satisfied by p(A). (Peacock’s 
principle.) It is important to realize that with this “spec-
tral” interpretation of the functional calculus, the seem-
ingly obscure meaning of f(A) for an arbitrary ma-
trix A  and any arbitrary function f  becomes easy to 
understand. If A  is similar to a diagonal matrix, then 
by choosing the eigenvectors as coordinates, we see that 
f(A) operates independently in each coordinate di-
rection, where it is simply multiplication by  f(wj), 
the function f  evaluated at the j th eigenvalue.

The Riesz-Dunford and Lap-
lace-Phillips Functional Calculi
If you have had complex variables, you should remem-
ber the Cauchy integral formula. This is the surprising 
fact that for any analytic function f(z), if you integrate 
the quotient f(z)/2πi(z − w)  around a simple 
closed curve containing the complex number w  in the 
interior, you get the value of w  at that point! (If this 
is news to you, take it on faith for the purpose of this 
article. The definition of complex integration works in a 
very natural way, with the usual rules carried over from 
calculus.)

Now, in this integration formula, nothing prevents us 
from replacing the complex number w  by a matrix A . 
Then instead of dividing f(z) by z − w , we “divide” 

it by z −A . What does that “mean”? Just as in Boole’s 
operator method in Section 1 above, it means’ “Mul-
tiply f(z) by an inverse operator, (z −A)−1”. The 
standard definition of the integral survives under this 
substitution. We now have a meaningful matrix-val-
ued expression, which is the obvious candidate to serve 
as the definition of f(A). This formula is called the 
“Riesz-Dunford functional calculus.”  

Voila!  We have extended the analytic function f  from 
the domain of the complex numbers to the  domain of 
matrices! The set of complex numbers z  where  z −A  
is not invertible is called the spectrum of A , or the set 
of eigenvalues of A . The complement of the spectrum 
in the complex plane is  called “the resolvent set of A”, 
and (z −A)−1  is  called “the resolvent matrix”.  It is 
a matrix-valued analytic function of z , and we can in-
tegrate it with respect to z .  In the elementary case,  the 
operation A  is just multiplication by a fixed complex  
number w , and we are looking at Cauchy’s integral for-
mula.  We can multiply the resolvent (z − w)−1 by 
any function that is analytic or holomorphic in the in-
terior of the simple closed curve, and by integrating get 
f(w). The same integration with respect to complex z
, and with a matrix A  instead of the complex number w, 
gives us a definition of f(A) for any analytic function 
f  and any square matrix A . One little detail should 
worry us. Is the value of this integral independent of the 
path of integration? In fact, we have to be careful about 
where we go with respect to the “spectrum,” the eigen-
values. In the functional calculus based on diagonaliza-
tion, we needed to be sure the function f  being applied 
to a matrix A  is defined on the spectrum or eigenvalues 
of A . In our present construction of f(A), we have to 
be sure all eigenvalues of A  are in the interior of our 
path of integration. With that precaution, Peacock’s 
principle of the permanence of equivalent forms is still 
good. An identity satisfied by the complex-valued ana-
lytic function f(z) is also satisfied by the correspond-
ing matrix-valued function of the matrix A .  

Exercise: For eA  defined by the Riesz-Dunford formula, 
and assuming AB = BA , prove eA+B

= eAeB  
and d/dt etA = AetA .

Since the exponential function is an entire analyt-
ic function (has no singularities in the finite complex 
plane), in this example the path of integration can be 
taken with arbitrarily large radius.

There are two useful operator identities in the 
Riesz-Dunford calculus, which are stated in terms of a 
function R(z,A) = (z −A)−1:

• First Resolvent Identity:
R(z,A)−R(z,B) = R(z,A)(B −A)

                                                               ×R(w,A) .
• Second Resolvent Identity:
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   R(z,A)−R(z,B) = R(z,A)(B −A)R

                                                        ×R(z,B).

You might suspect that if the operator is D = d/dx, 
this is just the same as Heaviside’s partial fractions for-
mula.

Exercise: Verify this suspicion.

Still More Functional Calculus 
for Matrices
In Cauchy’s formula, a function of two variables, z  and 
w , is integrated with respect to one variable to yield a 
function of the other variable. In several familiar for-
mulas analogous to Cauchy’s, a function of two varia-
bles f(t, w) is integrated with respect to t to yield a 
function F (w). In the Cauchy formula, the function 
we end up with is the numerator of the quotient being 
integrated, but evaluated at an interior point. In trans-
forms like the Laplace and Fourier, the result of integra-
tion is a new function of the parameter, which is called 
the Laplace or Fourier transform respectively of the 
original function that was integrated. Just as in the case 
of the Cauchy formula and its matrix version, we can 
replace the scalar parameter in the Laplace or Fourier 
transform with a matrix A , and use this integral as a 
definition of the transform function applied to A .

In the Cauchy and Riesz-Dunford calculi, we replace  
the complex parameter w  in the kernel (z − w)−1 
by the operator A  to get the kernel (z −A)−1. In the 
Laplace transform, where the real-valued kernel e−wt   
is multiplied by an input function f(t) to yield the 
transform F (w), we can replace the real exponential 
function e−wt  by the operator exponential  etA . The 
result is an operator-valued function of A , which can 
and should be called F (A).

In the Riesz-Dunford calculus, the function of a com-
plex variable f(z), known on the boundary of a region, 
is extended to a point w  inside that region merely by 
use of the special function 1/(z − w) , the resolvent. 
The properties of f  near w  can be deduced from the 
knowledge of 1/(z − w). So if the same formula is 
used to define f  as applied to an operator A , it is mere-
ly on the basis of the operator  resolvent (z −A)−1.                                                                             
It is necessary to justify this by showing that the resol-
vent of A  has all the information about A , just as the 
fraction 1/(z − w)  does so for the  number w . This 
is the importance of the two Resolvent Identities. They 
show that the operator resolvent works just like the 
complex valued resolvent.

Phillips evidently noticed that just as in the Riesz-Dun-
ford calculus the resolvent of A  serves as a building 
block to define a whole large class of functions of A ,                                                                                                      

so the semi-group generated by A  can be used as a 
building block to define a whole large class of of func-
tions of A . 

For example, the Laplace transform of the real-valued 
exponential function eat , which is the result of inte-
grating from 0 to infinity eate−wt   is 1/(w − a) . 
So if  we integrate from 0 to infinity the operator-valued 
function etAe−wt , we get the operator-valued func-
tion (w −A)−1. Surprise! We have recovered the 
“resolvent function” of the Riesz-Dunford calculus! The 
Riesz-Dunford functional calculus is the Laplace trans-
form of the Hille-Phillips functional calculus! 

This functional calculus is Chapter 15 of Functional 
Analysis and Semi-groups by Hille and Phillips, where 
it is credited to Phillips. I knew Phillips when I was an 
instructor at Stanford University in 1963-64. He col-
laborated with my adviser, Peter Lax, in their massive 
theory of scattering. A few years later I worked with 
Einar Hille, when he was at the University of New Mex-
ico after retiring from Yale and before moving on to the 
University of California in La Jolla.

Nelson Dunford was a professor at Yale University. With 
Jack Schwartz he co-authored their three-volume bible, 
Linear Operators. Schwartz was one of my professors at 
NYU in the 1950s. Functional Analysis by Frigyes Riesz 
and his pupil Bela Sz.-Nagy was our textbook. Riesz was 
one of the preeminent founders of functional analysis. 
He spent most of his life at the University of Szeged in 
Hungary, because in the University of Budapest math 
department Leopold Fejer was already present, and 
“one” was the maximum number of Jews allowed there. 
In 1988 on a visit to Szeged I had lunch with Nagy, who 
was then 75 years old. Riesz was no longer alive. Nagy 
told me that Riesz had survived the Holocaust by hiding 
in his apartment, where friends brought him food.

Symbolic Solutions of Partial 
Differential Equations
Now we must turn to numbers 3a, b, and c, in our imag-
inary test questions. Any linear initial-value problem—
the heat equation, the wave equation, the Schrodinger 
equation - are the most familiar - can be represented 
as du/dt = Au, with appropriate choice of A , and 
so can be solved symbolically by u(t) = etAu(0). 
What is the meaning of etA? 

Problem (3a), du/dt = c du/dx, is the simplest 
and easiest. If we represent spatial differentiation by 
the symbol D , this PDE becomes du/dt = cDu .                                   
Returning to our naive innocent mode, we would 
just write down u(t, x) = ectDu0(x). But in Sec-
tion 1 we met Boole’s formula, which informs us that 
ehDf(x) = Ehf(x) = f(x+ h). The group of 
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operators generated by cD  is just shifting to the right 
and left at speed c , u(t, x) = u(0, x+ ct).

But notice a striking discrepancy. These solution op-
erators can operate on any f , even one with sharp 
corners or jumps (a step function.) Such irregular 
functions cannot satisfy any differential equation. Can 
we find a way to make sense of differentiating non-dif-
ferentiable functions? (Hint: Yes. Instead of classical 
functions, use generalized functions, also known as 
Schwartz distributions.)

We can just as well write down the PDE 
du/dt = −c du/dx, with solution 
u(t, x) = u(0, x− ct). If we take second deriva-
tives, we get the same second-order pde for both shifts, 
Problem (3b), utt = c2uxx. This is the one-dimen-
sional wave equation, which describes signals propa-
gating along a string or a wire at speed c . In operator 
notation, utt = c2D2u  or, using operators Dt and 
Dx, (D2

t
− c2D2

x
)u = 0 . With operators just as 

with numbers, the difference of two squares is easily 
factored, to (Dt + cDx)(Dt − cDx)u = 0.

This factorization can be rewritten in the opposite or-
der. Each factor annihilates its corresponding shift op-
erator. (Dt + cDx)  annihilates any function of the 
form f(x− ct), and (Dt − cDx) annihilates any 
function of the form f(x+ ct), so any linear com-
bination of a function of x+ ct  and a function of 
x− ct  is annihilated by the product of the two opera-
tors. A general solution requires two arbitrary functions 
f  and g , u(t, x) = f(x+ ct) + g(x− ct). By 
appropriate choice of f  and g , we can satisfy two in-
itial conditions, for both the initial value of u(t, x) 
itself at time t = 0 , and the initial value of its deriv-
ative ut.

Exercise: Now  consider the Cauchy data 
u(0, x) = g(x), ut(0, x) = h(x). Derive 
d’Alembert’s formula

u(t, x) =
1

2
{g(x− ct) + g(x+ ct)}

                                  +
1

2c

∫
x+ct

x−ct

h(ξ)dξ .

The initial value, u(0, x)  sends half of itself to the 
right and half to the left, at speed c . To this is added 
the integral of the initial velocity ut(0, x) , also sent 
to the right and left at speed c .

In Problem (3c) we meet another important elementary 
pde of evolution, the “heat equation” ut = uxx, which 
has the symbolic solution u(t, x) = exp(tD2

x
). 

We will obtain a solution valid for all real x, and for all 
positive time. It will model heat flow from an instan-
taneous heat pulse concentrated at the origin x = 0  

at time t = 0 .

You might know that the Fourier transform turns the 
space derivative D  into multiplication by a new space 
variable. So to interpret exp(D2

).we might first con-
sider exp(x2). But this unpleasant function has ex-
plosive growth. Better try instead  exp(−x2). This is 
nice. It is a multiple of the familiar bell curve or normal 
curve from statistics. One interpretation of the heat 
equation (or “diffusion equation” as it also called) is an 
evolution of bell curves, starting with a singular peak 
at zero, and flattening out more and more, eventually 
going to zero everywhere. In other words, the variance 
goes from zero to infinity as time goes from zero to in-
finity. We can accomplish this by putting a factor 1/ct  
into the exponent along with −x2. (The coefficient c  
lets us adjust the rate of decay to fit in with the given 
differential equation.)

Thus we have a trial function exp(−x2/ct). This ex-
pression goes to 1 as t goes to infinity, pointwise for all 
x. As t goes to zero, for any x not equal to zero, it goes 
to zero, with exponential rapidity, but for x = 0 , it is 
constant = 1, independent of time. Physical reasoning 
tells us that a positive amount of heat energy initially 
concentrated at a single point would have to be very, 
very hot. Much more than 1. Also, at all values of x
, the temperature should eventually fall to zero, as the 
heat energy moves away to the right and left. So we need 
a correction factor, some negative power of t that gets 
really big as t goes to zero, and gets small as t goes to 
infinity. Not knowing in advance what is the right neg-
ative power, we can just call it a, and now have as our 
trial solution u = ta exp(−x2/ct). “Plug this in” 
to the differential equation, calculate ut and uxx, set 
them equal and solve for a and c . Sure enough, you 
will get c = 4  and a = −1/2 .  

This checks out as a solution to Problem (3c). But you 
may object, “There are many other solutions of this 
equation. What is so special about this one?” In fact, 
this is often called “the fundamental solution.” To see 
why, suppose you are given some arbitrary function 
f(x) as the initial temperature. What is the temper-
ature u(t, x) at future times? The equation is linear, 
so we can add solutions to get new solutions. Think of 
this initial temperature f(x) as the “sum” of separate 
contributions, which are each concentrated at a single 
point, and zero elsewhere. The solution corresponding 
to each one of these isolated initial temperatures is the 
fundamental solution we have just found, shifted over 
to the particular point in question, and multiplied by an 
appropriate factor, according to the value of the initial 
temperature f(x) assigned at that point. The “sum” of 
all these separate pointwise contributions to the initial 
temperature is the integral of the product of the ini-
tial temperature f(x) times the shifted fundamental 
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solution we have just obtained. This integral of a shifted 
product is called the “convolution” of the two functions. 
Thus the special solution we have just derived is the seed 
from which all other solutions of the initial value prob-
lem  are expressed as convolution integrals.

We have solved all three of the last group of test prob-
lems, which came from from the advanced subject of 
linear partial differential equations. Each of the differ-
ential operators appearing in these initial-value prob-
lems is the “generator” of a “semi-group” of “solution 
operators”, which we represented symbolically as the 
exponential function of the generator. The generator is 
a differential operator. It is the derivative of the solution 
operator. These generators and semi-groups operate on 
infinite-dimensional function spaces. 
Some linear partial differential equations are useful in 
physics. To study them, we must move up to infinite 
dimensional spaces. That may sound intimidating. But 
after all, we have been talking about n-by-n  matrices 
without restricting n . If n  is finite but “really really 
big”, wouldn’t that be close to infinite dimensions? To 
put it into language more acceptable in the classroom, 
can we do infinite dimensions by approximating from 
finite dimensions? Just as we approximate π by a finite 
decimal expansion, carried out as far as necessary.

In working with infinite-dimensional operators, we 
must make new distinctions which did not appear in 
the finite-dimensional world of matrix theory. We must 
distinguish between bounded and unbounded opera-
tors. The differential  operators are unbounded. As such 
an operator is iterated, it requires a more and more re-
stricted function space on which to operate - smooth-
er and smoother functions. The solution operators, in 
contrast, are bounded. This is already evident back in 
elementary calculus, where differentiation is unbound-
ed, but integration is bounded.

The axiomatic study of algebras of bounded operators 
is included in the highly developed theory of “Banach 
Algebras”.  This subject is largely the work of the famous 
Israel Moiseyevich Gelfand and his collaborators. (They 
used the name “normed rings” for their theory, which 
later became “Banach algebras.”) The different “func-
tional calculi”, including infinite series, which we devel-
oped for matrix algebras, are true more generally, for 
various other Banach algebras.

In order to understand unbounded operators, such 
as the differential operators associated to initial and 
boundary value problems, it is necessary to make ad-
ditional hypotheses, such as symmetry, or having com-
pact inverses. The existence of a bounded semi-group 
- that is, the solvability of the initial value problem - is 
a powerful tool. The Hille-Phillips functional calculus 
which we presented for matrices is available in the in-
finite dimensional context. So is the Riesz-Dunford cal-
culus, based on Cauchy’s integral formula. Diagonaliza-

tion works for the important special class of symmetric 
compact operators.

The spectra of unbounded operators can be more diffi-
cult to manage. No longer discrete sets of eigenvalues. 
But most of the tools we met in studying matrices are 
major weapons in dealing with  unbounded operators 
on infinite dimensional spaces. Diagonalization, and 
the Riesz-Dunford and Hille-Phillips representations, 
are chapters in these advanced topics. The facts that 
were presented in Section 2, on functions of matrices, 
carry over, with due precautions, to the infinite-dimen-
sional function spaces of linear partial differential equa-
tions. Infinite series works for bounded operators, in 
Banach algebras.

Final Methodological Musings
We have surveyed  a handful of different problems, each 
of which is usually expounded in isolation from other 
examples, and hopefully we have learned to see the op-
erational method in great generality.  This honest work 
entitles us to enter the realm of philosophical musing, 
and ask “What are we talking about, when we say cer-
tain formulas are meaningless, and others are meaning-
ful or legitimate?”

If Heaviside’s formulas about D  seem “meaningless”, 
then to a child in elementary school, the associative 
laws of addition and multiplication also seem meaning-
less. To the naive beginner, it is the nouns, the numbers, 
that are “real”, while the verbs, the operations, are mean-
ingful only when in actual operation. As Anna Sfard 
has emphasized, reification, the move from a verb to a 
noun, is intrinsically difficult. Students complain that 
the reification of a verb is “too abstract.”

When, with Oliver Heaviside, we write down a mean-
ingless “fraction,” 1/(2−D), or when,with a 5-by-5 
array of numbers called A , we write down etA , we are 
attempting to extend the domain of definition of divi-
sion or exponentiation And we want the extended func-
tion to still be “the same” function in the new domain, 
to be “just like it was” in the old domain. What does that 
“mean”? It means Peacock’s principle of “equivalence of 
permanent forms”. The extended function should still 
satisfy “the same” conditions and formulas. For the 
reciprocal function, for example, it means that “the re-
ciprocal of a product is the product of the reciprocals”. 
For the exponential, it means that “the exponential of a 
sum is the product of the exponentials”. Earlier in your 
schooling, you went through this same process of en-
larging a domain. In the 3rd or 4th grade you started to 
“learn fractions.” It’s easy to understand adding frac-
tions. However, you also have to multiply them!  

Dividing by 2 becomes “multiplying” by ½. Until now, 
multiplying was  just multiplying by a natural number, 
which meant adding the same thing up a certain num-
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ber of times. Multiplying by a fraction? That doesn’t 
“mean anything”.  Yes of course, we say “half of six is 
three”, but now we change that to “one half times  six 
equals three.” How does “of ” get changed to “times”?  

These worries are not discussed in class. Just copy the 
teacher and the textbook, until you get used to it. Look-
ing back on that now, we see that the “times” operation, 
multiplication was being extended from an old domain, 
the natural numbers, to a new one, the rational num-
bers. The rules for multiplying by fractions are com-
pelled to be what they are, in order to preserve the ex-
isting structure, to make the rules for natural numbers 
continue to be valid for fractions. Peacock’s principle is 
not a lucky surprise, it is the guiding principle by which 
we carry out the extension.
When we meet matrix multiplication, it is certainly 
clear that the “product” of two square matrices is not 
the same thing as ordinary numerical multiplication. 
By what right do we call it by the same name, “times” 
or product? In other words, how do we know that it is 
an extension of ordinary multiplication, that it  follows 
all the same rules? In fact, at the beginning of the line-
ar algebra course, it is necessary to check that  matrix 
multiplication is associative, and distributive (not com-
mutative).  

The process of extending domains is overt in a complex 
variables course. The zeta function is first defined by 
a series  convergent in the right half- plane, and then 
extended by means of a functional equation that the 
function satisfies.  When we extended the exponential 
function to the solution operator of a well posed ini-
tial-value problem, we did have to prove that this ex-
tended function satisfies the multiplicative property of 
the exponential. Fortunately, the proof is just a few lines, 
given the status of the solution operator.

Theorem 2: Let P [f1(x), · · · , fn(x)] , be a pol-
ynomial in the n  variables fj(z) where fj(z) are 
analytic functions of z  in some domain that con-
tains some interval  a ≤ x ≤ b  of the x axis.  If 
on the interval those functions satisfy an identi-
ty P [f1(x), · · · , fn(x)] = 0 ,  a ≤ x ≤ b ,                                                                                                  
then for all z  in the domain it is true that 
P [f1(z), · · · , fn(z)] = 0 . (From Churchill, 
Complex variables and applications, McGraw Hill, 
1966, page 262.)

While this theorem seems to be quite general, and suf-
fices for the examples in Churchill’s book, we need to 
also allow division in order to include the resolvent 
function. But in order to include division, we must im-
pose an appropriate condition to avoid dividing by zero. 
Not only multiplication and division of functions, but 
also composition of functions observes permanence. 
But the principle breaks down for square roots and oth-
er multi-valued functions. 

In elementary ODEs, we freely write p(D) to mean a 
polynomial with real coefficients, with, as a “variable”,  
the differentiation operator. “Multiplication” means 
successive application of a linear operator. We have 
extended the domain of the polynomial function from 
numbers to differential operators, because the differen-
tial operators follow the same rules as numbers. There is 
an amusing reversal of role here!

Differential operators are things that operate on func-
tions. D  doesn’t “mean” anything by itself, it only 
“means” something when you give it a function f  to 
operate on, Df . On the other hand, for some f ’s, 
in particular for polynomial functions p(x), we also 
write down and understand the result of doing it in 
the opposite order. p(·) transforms one operator D  
to another one, p(D). Instead of operators operating 
on functions, we have operators being operated on by 
functions.

Two of my own Papers are in 
this Symbolic Method!
In conclusion, I make a confession. In writing this very 
article, I noticed for the first time that in the 1970’s I em-
ployed the very same “operator calculus” or “symbolic 
method” that I am now preaching.

Two articles are superficially separate and unrelated. 
One is called “The Method of Transmutations.” It shows 
how to use the solution of one operator problem to get 
the solution to another problem involving the same op-
erator The second article, co-authored with Tosio Kato, 
introduced an infinite number of highly accurate ap-
proximation methods for linear initial-value problems.. 
These formulas are now called “rational approximations 
to semi-groups.” We used rational approximations to 
the complex-valued exponential in order to approxi-
mate the operator-valued exponential (“strongly con-
tinuous semi-group”).

A “transmutation” is a transform that takes the solu-
tion to one initial or boundary value problem in-
volving an operator A , and yields the solution to 
a different problem involving that operator. For in-
stance, we might have ut = Au  and v2 = A2v  or 
utt + aut + bu = A2u, and εvtt + avt = Av .  

This transmutation article is not a normal math re-
search publication. There is no theorem. Nothing is 
claimed to be proved! A collection of formulas, never 
previously brought together, are shown to be examples 
of the transmutation procedure. These examples show 
you how to find a transmutation formula. Just take away 
the operator A , and replace it with multiplication by a 
real or complex number w . If, as in all these examples, 
the solutions to these two “concrete” problems can be 
related by a known transform formula, voila! Just plug 

37



in your operator A  in place of w , and you have your 
transmutation! (This is what we did up above in Sec-
tion 2 to define an analytic function of a matrix—we 
“plugged in” the matrix for the real or complex number 
in the standard formula.) Transmutation is a very broad 
generalization of the usual applications of the Fourier or 
Laplace transform.

A transmutation may turn a singular perturbation 
problem into a regular one. Or Problem I could be a 
complicated concrete problem from an applied area, 
while Problem II could be a standard problem solved in 
every introductory text book. Problem I could involve 
confidential or secret data or information, or empiri-
cal date known only approximately. The difficulties or 
peculiarities of a singular or empirical operator-theo-
retical problem may be taken apart. with the singu-
larities brought down to real or complex analysis, and 
the operator-theoretic complications shifted over to a 
known standard problem. Carroll and Showalter used 
this transmutation method to study operator equations 
generalizing the singular Darboux equation that gov-
erns spherical means.

My second self-reference, the one about “rational ap-
proximation to a semi-group”, came about simply by 
noticing that the standard approximation schemes--the 
first-order implicit scheme used by Hille and Kato, and 
the second-order scheme called “Crank-Nicholson”--
were both merely the simplest examples of approximat-
ing the exponential function by rational functions - ra-
tios of polynomials - rather than purely by polynomials, 
as in Taylor series. Contemplating Hille and Crank-Ni-
cholson, I wondered, “Why stop there?” In fact, there 
is no barrier to cubic or quartic accuracy, or as high as 
you like!

At first it may seem laborious to divide by a polynomial. 
But No! Heaviside’s elementary trick of partial fractions 
saves the day. Just rewrite the polynomial divisor as a 
sum of inverses of linear functions. Values of the “resol-
vent function”, in other words.

The ratios of polynomials, when applied to the first-dif-
ference operator, become combinations of forward and 
backward differences, also called “implicit” and “explic-
it” differences. The use of implicit or forward differences 
corresponds to division instead of multiplication by the 
basic difference operator. This is necessary in order to 
keep the iterations bounded. This necessary condition 
is called “stability” in approximation theory.

For polynomials of degree n in the numerator and de-
gree m in the denominator, the best possible approxi-
mation to the exponential function is of order n + m, 
and is given by the Padé table. I used the Riesz-Dunford 
calculus for the proof, but Tosio Kato was able to get 
sharper estimates using the Hille-Phillips operational 
Laplace transform that I discussed above in Section 2.

Thomée and Brenner then proved an optimal estimate 
conjectured by Kato. More recently, Patricio Jara and 
others at Louisiana State University extended these re-
sults in several significant ways.

A worked-out computation offered in Jara (2008) is 
startling in its orders-of-magnitude superiority over 
the standard method. Specifically, the reader is referred 
to Figure 2 of this paper; his graphs of the comparative 
errors. You will notice that the scales of the two graphs 
differ by 5 orders of magnitude!
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