
COMPUTER "SNAPSHOT" of the paths of a number of molecules 

in a hypothetical fluid symbolizes one of the two main themes 
'
of 

this article: the mathematical analysis of the Brownian motion of 

a small particle buffeted by a turbulent "sea" of such molecules. In 

order to make the photograph, each imaginary molecule was repre­

sented by a bright dot on the face of a cathode ray tube_ By focusing 

a camera on the screen and leaving its shutter open, it was possible 

to record the trajectories of the moving dots on photographic film. 
The molecular-dynamical calculations of the paths were fed into 

the display system from a computer, in which the location of each 
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molecule was represented by a set of three numbers, specifying the 

three-dimensional coordinates of its center. The molecules were 

"shaken" one by one, using a mathematical technique called the 

Monte Carlo method; according to this technique, a particle chosen 

at random was displaced by an amount that was determined by pick­

ing one of a series of random numbers generated by the computer. 

Various boundary conditions can then he simulated by making 

some moves "legal," and others "illegal." The experiment was per­

formed by B. J. Alder and Thomas E. Wainwright at the Lawrence 

Radiation Laboratory of the University of California at Livermore. 
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Brownian Motion and Potential Theory 

The discovery that these two apparent�y unrelated branches 

of physics are in some sense mathenlatically equivalent has 

led to a new subject known as probabilistic potential theor,r 

O
ne of the most exciting events of 
the past decade or so in the field 
of mathematical analysis has been 

the appearance of a new subject called 
probabilistic potential theory. In essence 
this subject represents the marriage of 
two major branches of theoretical phys­
ics: the probabilistic theory of random 
processes, which studies such phenom­
ena as the Brownian motion of a small 
particle buffeted by a turbulent "sea" of 
molecules, and potential theory, which 
studies the equilibrium states of a ho­
mogeneous medium, for example the dis­
tribution of heat in a solid body at ther­
mal equilibrium. The development of 
probabilistic potential theory is rooted 
in the discovery that these two apparent­
ly unrelated branches of physics are in 
some sense mathematically equivalent; 
in other words, the mathematics of one 
can be translated meaningfully into the 
mathematics of the other. From this 
remarkable circumstance have flowed 
many unexpected insights into both sub­
jects. Before pointing to the accomplish­
ments of probabilistic potential theory, 
however, it will be helpful to review 
briefly the two separate lines of inquiry 
that the new theory connects, namely the 
theory of Brownian motion and potential 
theory. 

The phenomenon of Brownian motion 
was described in 1827 by the Scot­

tish botanist Robert Brown in the course 
of an investigation of the fertilization 
process in a newly discovered species 
of flower. Brown observed under the mi­
croscope that when the pollen grains 
from the flower were suspended in wa­
ter, they performed a "rapid oscillatory 
motion." At first he believed this motion 
was peculiar to the male sexual cells of 
plants. He soon found, however, that 
particles of other organic substances, bits 
of petrified wood and even chips of glass 

by Reuben Hersh and Richard J. Griego 

or granite exhibited the same motion. 
It was not until the 1860's that the 

problem of the cause of Brownian mo­
tion really began to bother theoretical 
physicists. Early attempts to explain the 
phenomenon in terms of fluid currents 
in the host medium had had to be reject­
ed because observation showed that the 
motions of two neighboring particles 
seemed quite uncorrelated with each 
other. Other properties of Brownian mo­
tion were equally intriguing; for exam­
ple, the higher the temperature the faster 
the motion, the smaller the particle the 
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faster the motion, the more viscous the 
medium the slower the motion. In addi­
tion, the given particle appeared equally 
likely to go in any direction, and the past 
motion of a particle seemed to have no 
bearing on its future motion. Last but 
not least, the motion never stops. 

The relation between temperature and 
speed seemed to suggest a molecular 
origin for the Brownian motion, since 
according to the kinetic theory of heat 
the temperature of any substance is pro­
portional to the average of the square of 
the speed of its molecules. Thus a higher 
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MOLECULAR ORIGIN of Brownian motion was originally suggested by tbe observation 

that Brownian particles move faster at higher temperatures; according to the kinetic theory 

of heat higher temperature simply means more rapid molecular motion. Even the smallest 

particle observable through a microscope, however, is far too large to show observable 

motion as a result of a series of kicks from one molecule at a time (lelt). Instead it has 

been shown that the random motion of a Brownian particle is caused by the random dis· 

crepancy between the molecular pressures on different surfaces of the particle (right). 
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BELL·SHAPED CURVES result when one plots the successive positions of a Brownian 

particle on a graph. The horizontal axis of the graph measures the distance traveled in a 

given direction, assuming that at a time t = 0 the particle is at point x = O. The vertical axis 

measures the prohability that the particle will he at any given point at time t = 1, 10 and 

100 seconds respectively for the three curves. Such symmetrical curves are called normal or 

Gaussian densities and represent the quantity e"x'/HJt/2y7TDt, where e is the base (equal 

to 2.7182818) of a natural system of logarithms and D is the diffusivity of the medium. 

temperature means more rapid average 
molecular motion, and observation had 
already shown that higher temperature 
means more rapid Brownian motion. On 
the other hand, any simpleminded notion 
that the jerky movement of Brown's par­
ticles was due merely to kicks from sin­
gle molecules was 

"
out of the question. 

Even the smallest particle observable in 
a microscope is far too large to show ob­
servable motion as a result of a series of 
kicks from one molecule at a time. 

A major advance came in the form of 
a theoretical analysis in statistical me­
chanics completed by Albert Einstein in 
1905, the year he published his first pa­
per on relativity. At the time many lead­
ing physical scientists, including Wil­
helm Ostwald and Ernst Mach, regarded 
molecules and atoms not as real entities 
but as intellectual figments that might 

x 

be useful for explaining certain natural 
phenomena. (This view, which is hardly 
remembered today, is somewhat reminis­
cent of the way many physicists later 
regarded the wave-particle duality of 
quantum mechanics.) Einstein, reason­
ing on the basis of the kinetic theory of 
heat, determined that if an observable 
particle were in the midst of a molecular 
bombardment, it would then describe a 
random motion caused by the difference 
in the number of blows it might receive 
at any instant on, say, its left and right 
surfaces. The smaller the particle, the 
more likely it would be that this differ­
ence would be sufficient to cause a de­
tectable push. The less viscous the fluid, 
the faster and farther the particle would 
go as a result of each push. Once each 
tiny step was stopped by the fluid's vis­
cosity, any future motion would depend 
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7 8 9 10 11 

INTUITIVE NOTION of what is involved in Norbert Wiener's mathematical model of 

Brownian motion can be obtained from this illustration. The black zigzag line is the path 

traced out in a finite time period (in this case 11 seconds) by a one·dimensional motion that 

changes direction only at the instants t = 1, t = 2 and so on. If this process were continued 

for an hour, say, there would be only a finite number of paths (2a,600, to be exact), and one 

could say that the particle chooses one path at random in the sense that each path has a 

probability of 1/23,600. Such a process is called "random walk" or "drunkard's walk." 

Wiener solved the problem of going to the limit of infinitely small time increments. 
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only on the random discrepancy between 
molecular pressures on the particle's left 
and right surfaces, its front and back 
surfaces or its top and bottom surfaces. 

Over a period of time such a hypo-
thetical particle would tend to drift 

from its original position. Its exact posi­
tion after a certain number of seconds is 
of course unpredictable, but it turns out 
that one can state in a general way 
where the particle is likely to be. If the 
experiment is performed many times and 
the successive positions of the particle 
are plotted on a graph, one obtains a 
bell-shaped curve such as the curves 
shown in the top illustration on this page. 
The horizontal axis in each case mea­
sures the distance traveled in any given 
direction, say left or right, assuming that 
at time t = 0 the particle is at the point 
x = O. The vertical axis of the graph· 
measures the probability that the particle 
will be at any given point at time t = 1, 
10 and 100 seconds respectively for the 
three curves. 

It is evident from such graphs that the 
most probable position is always the 
original position and that the farther 
away a position is, the less likely the 
particle is to be there at any given time. 
Moreover, the graphs are symmetric, 
since the movement of the particle is 
unbiased between left and right. As one 
might expect, the three curves show that 
the longer the particle drifts, the like­
lier it is to wander from its starting point. 
Bell-shaped curves such as these are 
called normal or Gaussian distributions, 
and they typically arise in situations 
where the measured quantity is the sum 
of a great many independent but essen­
tially identical random variables, in this 
case the many little pushes that add up 
to the total motion. 

It is remarkable and amusing that only 
after Einstein had completed his calcu­
lations did he learn that the phenome­
non he was predicting was already well 
known! He wrote later: "My major aim 
in this was to find facts which would 
guarantee as much as possible the exis­
tence of atoms of definite finite size. In 
the midst of this I discovered that, ac­
cording to atomistic theory, there would 
have to be a movement of suspended 
microscopic particles open to observa­
tion, without knowing that observations 
concerning the Brownian motion were 
already long familiar." 

It was largely this work of Einstein's 
that finally put out of fashion the view 
that molecules and atoms might be fic­
titious. In 1926 Jean Perrin received the 
Nobel prize for an experimental applica­
tion in 1909 of Einstein's results. By ob-
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serving actual Brownian movement Per­
rin was able to measure the predicted 
displacements and was thereby able to 
compute the diffusivity parameter D. 
According to Einstein's formula, D = 

2RT INt, where R is a universal constant, 
T is the absolute temperature, N is Avo­
gadro's number (the number of mole­
cules in a gram-molecular weight of a 
gas) and t is a viscosity coefficient. In 
this way Perrin succeeded in obtaining a 
value for Avogadro's number, one of the 
fundamental constants of nature: he 
found that N is approximately equal to 
6 X 1O��. 

k far as physicists were concerned, Ein-
stein's and Perrin's investigations 

left the problem of Brownian motion in 
reasonably good shape; more recent work 
has tried to refine and justify Einstein's 
calculations on the basis of the general 
Maxwell-Boltzmann equations of statis­
tical mechanics. For mathematicians, 
however, the story does not really begin 
until 1920, when Norbert Wiener wrote 
his first paper on Brownian motion. 

Whereas from a physical viewpoint 
Einstein's calculations and Perrin's ex­
periments had explained Brownian mo­
tion quite adequately, from a mathe­
matical viewpoint the subject was still 
tantalizingly confused. The heart of the 
difficulty was to make precise mathe­
matical sense out of the notion of a par­
ticle moving "at random." Everyone 
knows what it means to pick between 
heads and tails at random; it means each 
alternative has a probability of 1/2 (if 
we assume that the toss is fair). The 
Brownian particle follows a path that is 
in some sense chosen at random from 
among all possible paths. The set of all 
possible paths, however, is a very large 
and complicated one, and it was one of 
Wiener's major achievements in mathe­
matics to show in what sense one can 
speak about choosing from this set at 
random. 

We shall not attempt here even to 
summarize Wiener's argument. None­
theless, an intuitive notion of what is in­
volved can be obtained by considering 
the path h'aced out in a finite time pe­
riod (say an hour) by a one-dimensional 
motion, which changes direction only at 
the instants t = one second, t = two sec­
onds and so on [see bottom illustmtion 
on opposite page]. In this case there are 
only a finite number of possible paths 
(23,60°, to be exact), and one could say 
that the Brownian particle chooses one 
path at random in the sense that each 
path has a probability of 1/23,60°. Such 
a process, made up of discrete steps, is 
sometimes called "random walk" or 
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ELASTIC MEMBRANE is stretched across a stiff, closed frame that is twisted into some 

fixed shape in space in this illustration of the role of harmonic functions in potential theory. 

The configuration of such a membrane is given by the height h of each point P on the surface 

of the membrane. Directly below each P on the membrane is a point P on the base plane, 

which has coordinates x, y. Besides being continuous, the function h(x, y) has the following 

simple property: If P is a point in the x, y plane, and r is a small circle with its center at P, 
then the value of hat P (that is, the height of the membrane above P) equals the average of 

the values of h for all points on the circle r. This is called the mean·value property, and a 

continuous function h possessing this property is called a harmonic function. In this case 

the position of P (the point on the membrane above P) is determined by the sum of the 

tension forces exerted on P by the surrounding portion of the membrane (arrows). If the 

membrane is in equilibrium, these forces must cancel, so that the number of nearby ele· 

vations greater than that of P must be matched by corresponding elevations lower than that 

of P, and the average must be just equal to the elevation of P, namely, the function h at P. 

"drunkard's walk." The difficulty is in 
going to the limit of infinitely small time 
increments. 

Wiener showed how to do this in a 
mathematically legitimate way, thereby 
bringing the term Brownian motion into 
the language of mathematics. In the 
Wiener process, as one refers to Wiener's 
model of Brownian motion, the distances 
traveled are distributed according to a 
Gaussian curve, just as they are in Ein­
stein's physical model of Brownian mo­
tion. Moreover, Wiener proved that al­
most certainly (with a probability of 1) 
the path is continuous but nowhere 
smooth. This also fits very nicely with 
physical intuition. A particle in Brown­
ian motion surely cannot jump instan­
taneously from one point to another, so 
that the path should be continuous; er­
ratic changes in direction seem to be tak­
ing place constantly, so that one might 
expect the path to consist entirely of 
sharp corners. 

Wiener's work has been continued by 
a long line of successors; in a sense it is 
the fountainhead of most modern work 
in random processes. One of the most 
fruitful outcomes of this work has been 
its role in the development of probabilis-

tic potential theory. To explain the cir­
cumstances that led to this highly suc­
cessful merger it is necessary to turn 
brieRy to classical, or nonprobabilistic, 
potential theory. 

potential theory is the mathematics 
of equilibrium. It studies harmonic 

functions, which arise whenever one has 
a homogeneous medium in a state of 
equilibrium. Consider an elastic mem­
brane stretched across a stiff, closed 
frame that is twisted into some fixed 
shape in space [see illustmtion above]. 
The configuration of such a membran� 
is given by the height h of each point P 
on the surface of the membrane. Directly 
below each point P on the membrane is 
a point P in the base plane, which has 
the coordinates x, y. Thus if the coordi­
nates x, y are given, then h is a de­
termined quantity; h is said to be "a 
function of x and y," or in more concise 
symbolic terms, h = h(x, y). 

It is phYSically clear, and easy to prove 
mathematically, that h is continuous, 
and moreover that it has the following 
simple property: If P is a point in the 
x, y plane, and r is a small circle with 
its center at P, then the value of h at P 
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(that is, the height of the membrane 
above P) equals the average of the val­
ues of h for all points on the circle r. 
This is called the mean-value property, 
and a continuous function h possessing 
this property is called a harmonic func­
bon. In this case it can be seen that the 
position of P (the point on the mem­
brane above P) is determined by the 
sum of tension forces exerted on j5 by 
the surrounding portion of the mem­
brane. If the membrane is in equilibri­
um, these forces must cancel, so that the 
total of nearby elevations greater than 
the elevation of j5 must be matched by 
corresponding elevations lower than the 
elevation of P, and the average must 
be just equal to the elevation of P, 
namely hat P. 

Another physical problem leading to 
a harmonic function is the problem of 
temperature equilibrium. In the theory 
of heat Row (which long antedates the 
kinetic theory of heat) it is known that 
in a homogeneous solid the temperature 
at any point P tends to fall if the average 
nearby temperature is lower than that at 
P; it tends to rise if the average nearby 
temperature is higher than that at P. If 
the body is in thermal equilibrium, so 
that the temperature at any given point 
does not change with time, then the tem­
perature at that point must equal the 
average temperature over the surface of 
a small surrounding sphere. In other 
words, the temperature T is a harmonic 

- 5 DEGREES 

function of the coordinates x, y, z of the 
point P [see illustration below]. 

The remarkable discovery that all the 
main problems and features of classical 
potential theory have a mathematical 
counterpart in the theory of Brownian 
motion was foreshadowed in 1928 by the 
work of Richard Courant, K. O. Fried­
richs and H. Lewy in Germany. The 
mathematical equivalence of the two 
theories has been fully exploited in the 
past two decades by a host of mathemati­
cians, including Joseph Doob, Gilbert 
Hunt and Mark Kac in the U.S., E. B. 
Dynkin in the U.S.S.R., P. A. Meyer in 
France and Shizuo Kakutani and K. Ito 
of Japan. 

The happy result of all this work is 
that today any information available in 
one theory can be translated into a theo­
rem in the other. In particular, it often 
happens that what is difficult or obscure 
in one theory is completely b'ansparent 
in the other. We shall now give several 
examples to show how light can be shed 
in either direction by this relation. 

The main connection between the the-
. ory of Brownian motion and potential 

theory is made by way of the central 
problem of potential theory, which is 
called the Dirichlet problem after the 
German mathematician P. G. L. Dirich­
let. Suppose that in the foregoing exam­
ple of a body at thermal equilibrium the 
temperature is measured at all points on 

20 DEGREES 

10 DEGREES 

17 DEGREES 

DISTRIBUTION OF HEAT in a homogeneous solid hody at thermal equilihrium is an­

other physical prohlem that involves a harmonic function. Since the temperature at any 

given point in such a hody does not change with time, the temperature at that point must 

equal the average temperature over the surface of a small surrounding sphere. In other 

words, the temperature T is a harmonic function of the coordinates x, y, z of the point P. 
The prohlem can be solved by means of the probahilistic theory of the Brownian motion of 

a hypothetical particle starting at P and hitting tbe surface of the body at a random point Q. 

70 

lhe surface of the body. Some points are 

hot and others are cold, and if the body 
has been maintained in this state for a 
while, one can expect that a thermal 
equilibrium has been attained in the in­
terior. The temperature in the interior 
varies from point to point, but at cach 
fixed point it does not change with time. 
From these assumptions can one com­
pute the interior temperature? 

In mathematical terms what one is 
seeking here is a harmonic function, de­
fined in the interior of the body, that 
takes on certain known values on the 
surface, or boundary, of the body. (In 
the membrane example the same mathe­
matical problem has the following physi­
cal interpretation: Given the position of 
the boundary of the membrane, compute 
the position of the interior pOints.) The 
study of Dirichlet's problem has occu­
pied the attention of many leading math­
ematical analysts of the past century. 
Wiener made major contributions to this 
study, yet he never saw how his own the­
ory of Brownian motion could be used to 
solve the Dirichlet problem; this was first 
done by Kakutani. 

To explain Kakutani's method we re­
sort to the language of Monte Carlo or 
Las Vegas. Considering once again the 
solid body of the foregoing example, 
choose an interior point P at which one 
wants to know the equilibrium tempera­
ture. Having chosen P, one now plays 
a somewhat unconventional gambling 
game: Use the point P as the starting po­
sition for the Brownian motion of a par­
ticle. Watch the particle. It will wander 
around and eventually (with a probabil­
ity of I!) hit the boundary. Say it hits at 
a certain point Q. Then one wins an 
amount equal to the known temperature 
at Q. Of course, it is a matter of chance 
where the particle first hits the bound­
ary. In short, P is a determined point in 
the interior, whereas Q is a random 
point on the boundary. 

Obviously one will win at the most the 
maximum boundary temperature and at 
the least the minimum boundary temper­
ature. Moreover, as in any gambling 
game, there is a certain amount one can 
expect to win in the long run if one plays 
habitually. This quantity can be found 
simply by playing a great many times 
and computing one's average winnings. 
We shall call this quantity the "expected 
value" of P, or E(P) for short. The "ex­
pectation" of the game is the amount a 
rational gambler would be willing to pay 
to the gambling house for the privilege 
of playing. It is this quantity-the ex­
pected winnings if one starts at P-that 
is precisely Kakutani's solution of the 
Dirichlet problem. 
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The idea is so simple that (by neglect­
ing a few mathematical fine pOints) one 
can readily verify that E(P) is indeed a 
solution. First of all, it should be clear 
that this expectation is a number. As we 
have defined it, it is a number of dollars, 
but we can equally well interpret it in 
degrees of temperature. Moreover, what 
number it is clearly depends on what 
starting point one designates for the par­
ticle in Brownian motion. If one starts 
close to a hot part of the boundary, one 
can expect to win more than if one starts 
near a cold part of the boundary. Thus a 
number is actually associated with each 
interior point P. In order to verify that 
E(P) is the equilibrium temperature (the 
solution of Dirichlet's problem) there are 
only two criteria to check: first, that it 
matches the known temperature on the 
boundary, and second, that it is har­
monic (that it is continuous and has the 
mean-value property) in the interior. 

\"1ith respect to the first criterion, it is 
clear that if one starts at a point P that is 
actually on the boundary, then the game 
is over before it begins, and the payoff 

E(P) is precisely the known temperature 
at the starting point; in other words, 
P = Q with a probability of 1. More­
over, it is plausible (and can be proved 
rigorously) that if one starts the particle 
at an interior point P sufficiently close to 
a particular boundary point Qo, then it 
is almost certain that one will first hit 
the boundary at a point very close to Qo, 
so that the expected winnings-the equi­
librium temperature assigned to P-is 
very close to the known temperature at 
Qo. Thus Kakutani's solution does have 
the required boundary behavior. (In this 
argument it is tacitly assumed that near 
Qo the boundary is smooth and that the 
boundary temperature is continuous.) 

Next one has to show that as a func­
tion of P the expected value E(P) in this 
game is a harmonic function. Again the 
required continuity is intuitively clear. 
All this means is that if the starting point 
P is changed very slightly, then the ex­
pected winnings are changed only slight­
ly. The payoff obviously depends on the 
relative distance of the starting point 
from the hot and cold parts of the bound­
ary; a slight change in starting position 
means a slight change in these distances. 

What about the mean-value property? 
This is the only part of the argument 
that is not perfectly straightforward, in 
that it requires the introduction of what 
might be called a gimmick. Draw a small 
sphere deSignated r around P. Now, in 
order to show that E is harmonic one has 
to show that E(P) is equal to the average 
of all the E(S)'s, where S is an arbitrary 
point on the sphere r. E(P) is the expect-
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PRINCIPLE that the average of the subaverages equals the grand average is employed in 

the solution of the heat·distribution problem by means of probabilistic potential theory. 

ed payoff of the game if the particle 
starts out at P. Pick a point S on r, and 
suppose that one considers only those 
plays of the game in which the particle 
first meets r precisely at S. Call the av­
erage winnings in these plays E(P IS). 
Because Brownian motion has no pre­
ferred direction, each point S on r is 
equally likely to be the first, and so, by 
the principle that the average of the sub­
averages equals the grand average [see 
illustration above], one sees that E(P) 
equals the average, taken over all points 
S on r, of E(P IS). 

The proof would be complete if it 
were now possible to show that E(P IS) 
is the same as E(S), E(S) being the ex­
pected winnings for a particle starting 
at S, and E(P IS) being the expected 
winnings for a particle starting at P and 
first meeting r at S. At any instant, how­
ever, the particle in Brownian motion 
behaves only on the basis of its present 
position; it is not influenced by its past. 
(This is called the "Markov property.") 
Therefore the expected behavior of a 
path from P through S is no different 
from the behavior of a path starting at S; 
consequently E(S) does indeed equal 
E(P IS). In physical terms this means 
that one could solve the equilibrium 
problem for heat flow or for a membrane 
by observations of Brownian motion, or 
conversely that one could find the ex­
pected outcome of a Brownian-motion 
experiment simply by observing the 
equilibrium configuration of a mem­
brane or a heat conductor. 

A noteworthy feature of the proba­
bilistic method of solVing the Dirichlet 
problem is that the boundary can be as 
irregular as one pleases. Other proce­
dures for solving the problem all encoun­
ter complications if the surface of the 
domain is too "spiky" or "hairy." (The 
surface of a bulldog is all right, but not 
the surface of a Saint Bernard or a 
poodle.) In contrast the Brownian-mo­
tion solution is meaningful in all cases. 
For a badly behaved boundary the pre­
scribed boundary values are taken "on 

the average," but not necessarily at each 
point. 

Having shown how the connection be-
tween Brownian motion and poten­

tial theory has been exploited to obtain 
deep insights into classical potential 
theory by simple probabilistic argu­
ments, we shall now give a few exam­
ples, based on the work of Kakutani and 
Doob, of how, on the other hand, com­
plicated and deep questions in proba­
bility are sometimes equivalent to very 
simple questions in potential theory. 

Our first example is the "gambler'S 
ruin" problem. Suppose that one of us 
(Hersh) plays with an opponent (Griego) 
at matching quarters. Hersh's fortune at 
the start is N dollars. Griego has M dol­
lars. Hersh resolves to play until he ei­
ther "breaks the bank" (by winning M 
dollars) or is "ruined" (by lOSing N dol­
lars). 

The question is: What is the prob­
ability that Hersh will be ruined? It is 
intuitively clear that the answer depends 
on the relative sizes of M and N. If N is 
much less than M, ruin is very likely; 
if N is much greater than M, Hersh is 
pretty sure to break the bank. What may 
not be clear is that it is possible to get 
an exact answer! 

To do this we define a second game. 
Imagine that you (the reader) are an 
onlooker at our quarter-matching. You 
watch our luck, and you bet a dolIar that 
Hersh will be ruined. If Hersh is ruined, 
you win a dollar; otherwise you win 
nothing. \"1hat are your expected win­
nings? Clearly they are equal to Hersh's 
probability of being ruined. Further­
more, if we call x(t) Hersh's net gain or 
loss at time t, then x changes from one 
instant to the next in the same way that a 
Brownian particle changes position. The 
Brownian particle moves to the left or 
the right with equal probability; Hersh's 
fortune increases or decreases with equal 
probability. The game is over when 
Hersh's winnings x are either +M dol­
lars or -N dollars. This corresponds to 
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a particle in Brownian motion on the x 
axis between the points x = +M and 
x = -N. The probability of ruin is the 
probability that the particle first hits the 
left boundary (x = -N) and not the right 
boundary (x = M). That means your 
game has a payoff equal to 1 if the par­
ticle first hits the left boundary and a 
payoff equal to 0 if it first hits the right 
boundary. This corresponds precisely to 
a Dirichlet problem for a one-dimension­
al domain (the interval between x = -N 
and x = M) with boundary values 1 at 
x = -N and 0 at x = M. 

We could consider the corresponding 
equilibrium-temperature problem, but 
it is even simpler in this case to visualize 
a membrane problem. In fact, since our 
domain is one-dimensional (a part of the 
x axis) we must consider a one-dimen­
sional elastic, say a stretched rubber 
band. Everyone knows that the equilib­
rium position of a stretched rubber band 
is a straight line. Since in this case the 
particle representing Hersh's winnings 
starts at x = 0, we are interested in the 
height of the rubber band above the 
point x = O. Simple geometry shows that 
it is just M/(M + N) [see illustration be­
low]. This, then, is Hersh's probability 
of being ruined. 

The method we have employed here is 
a simple and powerful one. We essen­
tially constructed a special Dirichlet 
problem, taking care to choose the do­
main and the boundary values stra-

tegically, so that the problem would 
have an interesting probabilistic inter­
pretation. The solution was available by 
inspection because the associated equi­
librium configuration was so extremely 
simple. 

Our next example will require a little 
more acquaintance with potential 

theory, but it will yield a much deeper 
probabilistic result. Choose a fixed point 
as an "origin," and consider the domain 
!]) of all points P whose distance from 
the origin is greater than E and less than 
K. Here, as usual, E is supposed to be 
a small positive number and K a very 
large one. In three-dimensional space 
!]) is the region between two concentric 
spheres, an inner one of radius E and an 
outer one of radius K. In two dimen­
sions the same conditions describe a ring 
between two concentric circles. In one 
dimension !]) is a pair of disconnected 
intervals, one to the right and one to the 
left of the origin [see illustration on page 
74]. In each case we pose a Dirichlet 
problem by asking for a function u that 
is harmonic in !]) and equal to 1 on the 
inner surface and 0 on the outer surface. 
What is the solution? 

In one dimension, as in the stretched 
rubber band, the only harmonic func­
tions u(x) are those that have straight 
lines as their graphs. A comparable con­
struction shows that in the one-dimen­
sional case the solution to the present 

ONE·DIMENSIONAL ELASTIC (in this case a rubber band stretched between two pegs in 

a wall) is considered in finding a solution to the "gambler's ruin" problem by means of 

probabilistic potential theory. The game is matching quarters. One player (Hersh) has a 

fortune of N dollars at the start. The other player (Griego) has M dollars. Hersh resolves 

to play until he either "breaks the bank" (by winning M dollars) or is "ruined" (by losing 

N dollars). In the theory of Brownian motion the particle representing Hersh's winnings 

starts at x = 0, and the probability of ruin is the probability that the particle first hits the 

left boundary (x = -N) and not the right boundary (x = +M). This means that an on· 

looker's game has a payoff equal to 1 if the particle first hits the left boundary and a payoff 

equal to 0 if it first hits the right boundary. Since the equilibrium position of a stretched 

rubber band is a straight line, Hersh's probability of being ruined is the height of the rub· 

ber band above the point x = O. Simple geometry shows that this value is just M/ (M + N). 
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problem is u(x) = (K - x)/(K - E) for x 
greater than E, and u(x) = (K + x)/ 
(K - E) for x less than -E. 

Just as in the gambler's-ruin problem, 
u(x) signifies the probability that if a 
particle starts at position x, it will hit 
the inner boundary (which is given a 
payoff equal to 1) before the outer 
boundary (which is given a payoff equal 
to 0). The formulas given above show 
that if K is very large, u is very close to 
1. It is possible to take the limit of u(x) 
as K goes to infinity; then u = 1 for all x 
and all E. Since the outer boundary has 
now vanished to infinity, !]) is just the 
set of all points outside the interval from 
-E to +E, and u(x) is the probability 
that a particle starting at x will eventual­
ly touch that interval. Since u = 1, it 
follows that the particle is almost certain 
to do so. Because both the origin and the 
starting position x are arbitrary, the par­
ticle will arrive at every point on the 
line. Having arrived there, the same ar­
gument applies once more to the future, 
so that it will in fact almost certainly 
return infinitely many times to every 
point. This property is described by the 
term "recurrent," and what we have 
shown is that Brownian motion in one 
dimension is recurrent. 

To consider the same question in two 
or three dimensions, one needs to 

know only the solutions of the corre­
sponding two- and three-dimensional 
Dirichlet problems, with the boundary 
values 1 aSSigned on the inner boundary 
and 0 on the outer boundary. Simple con­
siderations, which would be out of place 
in this article but which require only ele­
mentary calculus to carry out, show that 
in two dimensions the solution to our 
Dirichlet problem for a circular ring is 
u(r) = (log K - log r)/(log K - log E) , 

where log denotes logarithm. In three 
dimensions, for a spherical shell, the so­
lution is u(R) = (I/K - I/R)/(I/K -
1/ E) . We use r to denote distance to the 
origin in the plane, and R to denote dis­
tance to the origin in three-space. In 
each case r and R are numbers between 
E and K. 

These functions u(r) and u(R) have 
the same probabilistic meaning as the 
u(x) we just obtained in the one-dimen­
sional case; they give the probability 
that a particle, starting at r or R units 
from the origin, will hit the inner bound­
ary before it hits the outer one. 

The interesting question is: What 
happens as K becomes extremely large? 
Since log K goes to infinity as K goes to 
infinity, we see that in two dimensions, 
as in one, Brownian motion is recurrent, 
that is, the particle is almost sure to re-
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SCIBNCB/SCOPB 

Apollo 8 voice and television communications depended heavily on Hughes-built 
equipment: 

• • •  the 20-watt microwave traveling wave tube that sent Apollo 8's signals 
earthward (one of the more than 100 flight-quality TWTs built for NASA since 
1962 and used on the Syncom, Early Bird, Intelsat 2, and ATS satellites and the 
Pioneer, Mariner, Lunar Orbiter, and Surveyor spacecraft); 

. • •  the antenna-feed subsystems aboard three special vessels stationed on the 
high seas around the globe to receive and relay Apollo 8's signals; 

. • .  the ATS satellite used in support of the Apollo 8 splashdown; it relayed TV 
from USS Yorktown to Brewster Flats, Wash., for commercial distribution. 

The first European-built equipment for NADGE -- the $300-million air defense 
system that will guard NATO nations from Norway to Turkey -- is now undergoing 
integration testing at Hughes in Fullerton, Calif. The data display console 
built by Selenia S.p.A. of Italy and the video extractor by N.V. Hollandse­
Signaalapparaten of The Netherlands are linked with a general-purpose computer 
and other equipment built by Hughes. 

ENGINEERS: Hughes is on the grow! New development programs offer immediate op­
portunities for Systems, Circuits, Radar, Communications, Electro-optical, Dis­
play, Sonar, Electronics Packaging, Test Equipment, and Solid State Microwave 
engineers. Engineering degree, at least two years of related experience, and 
U.S. citizenship required. Please send your resume to Mr. J. C. Cox, Hughes Air­
craft Co., P.O.Box 90515, Los Angeles 90009. An equal opportunity employer. 

An infrared night sight for the Army's Cheyenne helicopter, now being built by 
Hughes under contract with Lockheed-California, will give the gunner a picture 
of ground targets nearly as clear as he would see in daylight. The PINE (for 
Passive Infrared Night Equipment) system enables him to locate targets and fire 
automatic guns, rockets, grenades, machine guns, or Hughes-built TOW wire­
guided anti-tank missiles. 

A new method of detecting flaws in metals was presented at the eighth Symposium 
of Physics and Nondestructive Testing in Chicago recently by a University of 
Arizona professor and a Hughes engineer. Their method sends ultrasonic Lamb 
waves throughout a solid material to find defects, much like a submarine sends 
out sonar waves. Engineers can pinpoint the location and size of flaws by not­
ing the magnitude of the echo signals and the time they take to return. 

An orbiting "windowshade" of solar cells, which will capture enough of the sun's 
energy to produce 1500 watts of power, is being built by Hughes under contract 
to the Aero Propulsion Laboratories of the U.S. Air Force. Designed to supply 
future satellites with electricity, it c onsists of two flat sheets of solar cells 
(called arrays), each 5� x 16 feet long, which will unroll into space from a 
drum. Space testing of the system is scheduled for late 1970. 

Creating a new world with electronics 
r------------------, 
I I 

: HUGHES: I I 
L __________________ J 
HUGHES AIRCRAFT COMPANY 

© 1969 SCIENTIFIC AMERICAN, INC



n a n  

- K  - S o K 

DEEP RESULT in probability theory is obtained in the process of solving the following 

problem : Choose a fixed point as an "origin," and consider the domain CJ) of all points P 
w hose distance from the origin is greater than e and less than K. ( e is supposed to be a very 

small positive number and K a very large one. ) In three·dimensional space ( top ) CJ) is the 
region between two concentric spheres, an inner one of radius e and an outer one of radius 

K. In two dimensions ( middle ) the same conditions describe a ring between two concentric 

circles. In one dimension ( botto m )  the domain is a pair of disconnected intervals, one to 

the right and one to the left of the origin. In each case the problem is to find a func­

tion u that is harmonic in CJ) and equal to 1 on the inner surface and 0 on the outer surface. 
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turn infinitely many times to a small 
neighborhood of any point. 

In three-dimensional space, on the 
other hand, letting K go to infinity yields 
u(R) = (- l/R)/(- l/e)  = e/R. This is 
the probability that the particle, start­
ing at distance R greater than e, will ever 
approach within e of the origin. Since u 
is less than 1, there is a positive proba­
bility that the particle will wander off 
and never return. There is, so to speak, 
more room in three-space to escape. 
Thus Brownian motion in three dimen­
sions is nonrecurrent. This result, which 
we have obtained with modest effort, is 
a deep result in probability theory. 

The function u(R) = e/R, which we 
have just considered, can be extended 
by setting it equal to 1 for R less than 
or equal to Co The extended function we 
have defined is known as the capacitory 
potential of the sphere 5 1; ' with radius e 

and center at O. The capacitory potential 
of a set B is an important notion of classi­
cal potential theory; it is a function har­
monic outside B, equal to 1 inside B, and 
equal to 0 very far from B (at infinity). 

Just as in the special case of 5 E , so in 
very general cases the capacitory poten­
tial of B is simply the probability that a 
Brownian particle, starting at a given 
point, will ever hit B .  Indeed, almost the 
same arguments applied to the case of 
a sphere would show that the probability 
is equal to 1 for a starting point inside B, 
is harmonic for a starting point outside 
B and is small at great distances from B .  

Current work in  this area has yielded 
far-reaching generalizations of both 
Brownian motion and potential theory. 
The interconnection between classical 
potential theory and Brownian motion 
depends heavily on the fact that Brown­
ian motion is a Markov process, that is, 
its present behavior is not influenced by 
its past behavior. Recent investigations 
have shown that in a very real sense 
every decent Markov process corre­
sponds to some generalized potential 
theory. For example, the classical theory 
of Riesz potentials corresponds to what 
are called the stable processes of proba­
bility theory. Moreover, Markov chains 
(which are discrete Markov processes) 
have their own potential theories. 

Thus the probabilistic viewpoint in 
potential theory has unified and clarified 
'the underlying principles of potential 
theory, and conversely concepts bor­
rowed from potential theory and applied 
to probability theory have demonstrated 
the deep analytic structure of Markov 
processes. This has helped to end the 
isolation in the mathematical realm that 
probability theory has suffered from to 
some degree in the past. 
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• We have a fatal attraction 
for the devastating pine bark beetle 

M o u n t a i n  p i n e  b e e t l e s  k i l l  o v e r 400,000 
matu re w h i te p i nes a y e a r ,  p l u s  u n c o u n ted 

t h o u s a n d s  o f  p o n d e ro s a ,  l o d g e p o l e  a n d  

s u g a r  p i nes.  Convent iona l  methods o f  con­

trol  p roved i n adequate and too costly.  Since 

1 965 ,  P o t l a t c h  f o r e s t e r s  h av e  s p o n s o r e d  

research b y  lead i n g  b i o l o g i sts and chem ists 

to solve this serious i n sect prob lem of fed­

e ra l ,  state and pr ivate t i m ber lands .  And now 

i t  looks l i ke we h ave an answer.  The fem a l e ,  

afte r she bo res i nto the i n n e r  bark ,  p ro d u ces 

an attractant that d raws a mass i n festat ion 

o f  h u n g ry b e e t l e s  t h a t  k i l l  the tree.  T h i s  

essence has been synthesized , and w i l l  now 

be tested commerc i a l l y  i n  our forests to l u re 

beetles to sel ected a reas where they can be 

d e s t r o y e d .  T h e n  e v e r y b o d y  w i l l  b e n e f i t  

except  t h e  b e e t l e s .  P o t l atch  Fo rests,  I n c . ,  

P. O .  B o x  3591 , S a n  Franc isco 941 1 9. 

Potlatch 
Po t l a t c h ,  t h e  f o r e s t s  w h e r e  i n n ov a t i o n s  g ro w  . . .  i n  w o o d  p ro d u c ts ,  i n  p a p e r b o a r d  a n d  p a c ka g i n g, i n  b u s i n e s s  a n d  p r i n t i n g  p a p e rs 
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" P o l a ro i d" a n d  " Po l a co l or" ® 

d'e4razien on d'e4razien 
on 'Polaroid Land �ilm 

A rt h u r  d ' A ra z i e n  is a 
wo r l d - fa m o u s  i nd u st r i a l  
p h otogra p h e r .  

" T h  i s  p h otog ra ph  i s  a 
t r i p l e  ex pos u re .  

A n d  I too k 1 9  m o re j u st 
l i ke i t  o n  Pol a ro i d  4x5 
La n d  co l o r  f i l m .  

F ra n k ly ,  I d id n 't t h i n k  i t  
co u l d b e  d o n e  u nt i l  I d i d 
i t .  A nd I ' ve ta ke n a lot 
of m u lt i p le -expos u re 
p i ct u res . 

Yo u see , a fte r eve ry 
ex posu re I too k t h e  fi I m 

o u t  of the  ca m e ra a nd 
wa ited u nt i l  t h e  l i ght  h a d  
c h a n ged t o  my l i k i n g 
befo re I put  i t  bac k  a nd 

ex posed a ga i n .  I t  was 
d ay l  ight  when I too k t h e  
f i rst ex pos u re .  

Wh a t ' s  s o  u n u s u a l  
a bout  t h a t  i s  t h e  accu racy 
I got . W h at with putt i  ng 

i n  a nd ta k i ng out 20 
s h eets of f i  I m i t ' s  re­
m a rka b l e  I d i d n ' t get a 
t r i p l e  i m age.  

I f  you ' ve eve r t r i ed a 
se r ies of m u lt i p l e  
expos u res w i t h  co nve n ­
t i o n a l c u t  f i l m  i n  a c u t  
f i l m  h o l d e r  a nd watc hed 
t h at s p r i n g b a c k  s n a p  
aga i n st t h e  body w h e n  
y o u  re m ove t h e  h o l d e r ,  
y o u  k n ow h o w  c h a n cy i t  i s .  

W i t h  Po l a ro i d  4x5 f i l m  
it ' s  d i ffe rent .  O nce 
you 've p u t  i n  the Po l a ro i d  
4x5 La n d  F i l m  H o l d e r ,  
a l l  you ' re ta k i n g out  o r  
p u tt i n g  i n  i s  t h e  f i l m . A n d  

. . 

n o  s n a p p i ng s p r i n gs . 
To m e ,  gett i n g acc u rate 

p ictu res is i m po rta nt .  
But  t h at m ea n s m o re 

t h a n s h a r pnes s .  The c o l o r  
h a s  t o  b e  r i g h t  too . 

The co l o r  of Po l a c o l o r  
f i l m  i s  r i g ht .  

I n  fact , in  some s i t u a ­
t i o n s  i t  adds a q u a l ity 
to the p i ct u re n o  ot h e r  
f i l m  ca n eq u a l .  

O n  to p of a l l  t h at ,  a s  
a tec h n i c a l ly -o r i e nted 
pe rso n ,  I a m  j u st fasc i ­
n ated w i t h  t h e  a b i l i ty t o  get 
exce l l e n t  p r i nts i n  seco n d s .  

So m e h ow ,  i t ' s  l i ke 
h a v i n g  a co l o r  l a b  i n  you r  
ca m e ra . A l a b  I own a n d 
o pe rate.  So I ca n c h a n ge 
res u l ts at  w i l l ,  by c h a ng­
i n g d eve l o p m e n t  t i m e a n d 
te m peratu re . O r  by a d d i n g 
o r  ta k i n g away f i l te r s .  

A n d  t h e  fact t h at a l l  
t h at i s  u n d e r  m y  c o n t ro l , 
w h i l e I ' m s h oot i n g ,  ca n 
ofte n l ea d  me i nto a reas 
I m i ght  n ot h a ve ex p l o red 
ot h e rw i se . 

I t  a ppea l s  to m y  s e n se 
of adventu re . " 
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