<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"></head><body dir="auto"><div dir="auto">I have finished a number of Coursera courses recently, including "Deep Learning & Neural Networks with Keras" which was ok but not great. The problems with deep learning are</div><div dir="auto"><br></div><div dir="auto">* to achieve impressive results like chatGPT from OpenAi or LaMDA from Goggle you need to spend millions on hardware </div><div dir="auto">* only big organisations can afford to create such expensive models</div><div dir="auto">* the resulting network is s black box and it is unclear why it works the way it does</div><div dir="auto"><br></div><div dir="auto">In the end it is just the same old back propagation that has been known for decades, just on more computers and trained on more data. Peter Norvig calls it "The unreasonable effectiveness of data"</div><div dir="auto">https://research.google.com/pubs/archive/35179.pdf</div><div dir="auto"><br></div><div dir="auto">-J.</div><div dir="auto"><br></div><div><br></div><div align="left" dir="auto" style="font-size:100%;color:#000000"><div>-------- Original message --------</div><div>From: Russ Abbott <russ.abbott@gmail.com> </div><div>Date: 1/8/23 12:20 AM (GMT+01:00) </div><div>To: The Friday Morning Applied Complexity Coffee Group <friam@redfish.com> </div><div>Subject: Re: [FRIAM] Deep learning training material </div><div><br></div></div><div dir="ltr"><div style="font-family:arial,helvetica,sans-serif;font-size:small;color:rgb(0,0,0)" class="gmail_default">Hi Pieter,</div><div style="font-family:arial,helvetica,sans-serif;font-size:small;color:rgb(0,0,0)" class="gmail_default"><br></div><div style="font-family:arial,helvetica,sans-serif;font-size:small;color:rgb(0,0,0)" class="gmail_default">A few comments.</div><div style="font-family:arial,helvetica,sans-serif;font-size:small;color:rgb(0,0,0)" class="gmail_default"><ul><li>Much of the actual deep learning material looks like it came from the Kaggle "<a href="https://www.kaggle.com/learn/intro-to-deep-learning">Deep Learning</a>" sequence.</li><li>In my opinion, R is an ugly and <i>ad hoc</i> language. I'd stick to Python.</li><li>More importantly, I would put the How-to-use-Python stuff into a preliminary class. Assume your audience knows how to use Python and focus on Deep Learning. Given that, there is only a minimal amount of information about Deep Learning in the write-up. If I were to attend the workshop and thought I would be learning about Deep Learning, I would be disappointed--at least with what's covered in the write-up. <br><br>I say this because I've been looking for a good intro to Deep Learning. Even though I taught Computer Science for many years, and am now retired, I avoided Deep Learning because it was so non-symbolic. My focus has always been on symbolic computing. But Deep Learning has produced so many extraordinarily impressive results, I decided I should learn more about it. I haven't found any really good material. If you are interested, I'd be more than happy to work with you on developing some introductory Deep Learning material. </li></ul><div><span style="font-family:Arial,Helvetica,sans-serif;color:rgb(34,34,34)">-- Russ Abbott </span><br></div></div><div><div data-smartmail="gmail_signature" class="gmail_signature" dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">Professor Emeritus, Computer Science<br>California State University, Los Angeles<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div class="gmail_attr" dir="ltr">On Thu, Jan 5, 2023 at 11:31 AM Pieter Steenekamp <<a href="mailto:pieters@randcontrols.co.za">pieters@randcontrols.co.za</a>> wrote:<br></div><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote"><div dir="ltr">Thanks to the kind support of OpenAI's chatGPT, I am in the process of gathering materials for a comprehensive and hands-on deep learning workshop. Although it is still a work in progress, I welcome any interested parties to take a look and provide their valuable input. Thank you!<br><br>You can get it from: <br><a href="https://www.dropbox.com/s/eyx4iumb0439wlx/deep%20learning%20training%20rev%2005012023.zip?dl=0">https://www.dropbox.com/s/eyx4iumb0439wlx/deep%20learning%20training%20rev%2005012023.zip?dl=0</a> <div><br></div><div><div>Pieter<br><br></div></div></div>
-. --- - / ...- .- .-.. .. -.. / -- --- .-. ... . / -.-. --- -.. .<br>
FRIAM Applied Complexity Group listserv<br>
Fridays 9a-12p Friday St. Johns Cafe / Thursdays 9a-12p Zoom <a rel="noreferrer" href="https://bit.ly/virtualfriam">https://bit.ly/virtualfriam</a><br>
to (un)subscribe <a rel="noreferrer" href="http://redfish.com/mailman/listinfo/friam_redfish.com">http://redfish.com/mailman/listinfo/friam_redfish.com</a><br>
FRIAM-COMIC <a rel="noreferrer" href="http://friam-comic.blogspot.com/">http://friam-comic.blogspot.com/</a><br>
archives: 5/2017 thru present <a rel="noreferrer" href="https://redfish.com/pipermail/friam_redfish.com/">https://redfish.com/pipermail/friam_redfish.com/</a><br>
1/2003 thru 6/2021 <a rel="noreferrer" href="http://friam.383.s1.nabble.com/">http://friam.383.s1.nabble.com/</a><br>
</blockquote></div>
</body></html>