<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle18
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal">It depends if it is given boundaries between the datasets. Is it learning one distribution or two?<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b>From:</b> Friam <friam-bounces@redfish.com> <b>On Behalf Of
</b>Jochen Fromm<br>
<b>Sent:</b> Sunday, February 5, 2023 4:38 AM<br>
<b>To:</b> The Friday Morning Applied Complexity Coffee Group <friam@redfish.com><br>
<b>Subject:</b> [FRIAM] Datasets as Experience<o:p></o:p></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal">Would a CV of a large language model contain all the datasets it has seen? As adaptive agents of our selfish genes we are all trained on slightly different datasets. A Spanish speaker is a person trained on a Spanish dataset. An Italian
speaker is a trained on an Italian dataset, etc. Speakers of different languages are trained on different datasets, therefore the same sentence is easy for a native speaker but impossible to understand for those who do not know the language. <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Do all large language models need to be trained on the same datasets? Or could many large language models be combined to a society of mind as Marvin Minsky describes it in his book "The society of mind"? Now that they are able to understand
language it seems to be possible that one large language model replies to the questions from another. And we would even be able to understand the conversations.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">-J.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</div>
</body>
</html>