COMPUTER “SNAPSHOT” of the paths of a number of molecules
“2in a hypothetical fluid symholizes one of the two main themes of
this article: the mathematical analysis of the Brownian motion of
“-a small particle buffeted by a turbulent “sea” of such molecules. In
" order to make the photograph, each imaginary molecule was repre-

sented by a bright dot on the face of a cathode ray tube. By focusing

a camera on the screen and leaving its shutter open, it was possible
“'to.record the trajectories of the moving dots on photographic film.

The molecular-dynamical calculations of the paths were fed into
the display system from a computer, in which the location of each
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molecule was represented by a set of three numbers, specifying the
three-dimensional coordinates of its center. The molecules were
“shaken” .one by one, using a mathematical technique called the
Monte Carlo method; according to this technique, a particle chosen
at random was displaced by an amount that was determined by pick-
ing one of a series of random numbers generated by the computer.

. Various boundary conditions can then be simulated by making *

some moves “legal,” and others “illegal.” The experiment was per-
formed by B..J. Alder and Thomas E. Wainwright at the Lawrence
Radiation Laboratory of the University of California at Livermore.




ne of the most exciting events of
O the past decade or so in the field

of mathematical analysis has been
the appearance of a new subject called
robabilistic potential theory. In essence
this subject represents the marriage of
two major branches of theoretical phys-
¢s: the probabilistic theory of random

nd as the Brownian motion of a small
article buffeted by a turbulent “sea” of
olecules, and potential theory, ‘which
tudies the equilibrium states of a ho-
ogeneous medium, for example the dis-
ibution of heat in a solid body at ther-

unrelated branches of physics are in
ome sense mathematically equivalent;
other words, the mathematics of one
cin be translated meaningfully into the
athematics of the other.  From this
emarkable  circumstance have flowed
1any unexpected insights into both sub-

ents of probabilistic potential theory,
owever, it will be helpful to review
riefly the two separate lines of inquiry

eory

“'was described in 1827 by the Scot-
ish botanist Robert Brown in the course
f-an investigation of the fertilization
ocess in a newly discovered species
flower. Brown observed under the mi-
scope that when. the pollen grains
om the flower were suspended in wa-
er, they performed a “rapid oscillatory
otion.” At first he believed this motion
s peculiar to the male sexual cells of
ants.  He soon found, however,  that
cles of other organic substances; bits
f petrified wood and even chips of glass

he phenomenOﬂ of Brownian motion:

'

or - granite exh1b1ted the same motion.

It was not until the 1860’s that the
problem of the cause of Brownian mo-
tion really began to bother theoretical
physicists. Early attempts to explain the
phenomenon in térms of fluid currents

" in the host medium had had to be reject-

rocesses, which studies such phenom-

robabilistic potential theory is rooted
n the discovery that these two apparent-n

cts. Before pointing to the accomplish-

1at the new theory connects, namely the
reory of Brownian motion and potential .

.MOLECULAR ORIGIN of Brownian motion was originally suggested by the observation -
- that Brownian particles move faster at higher temperatures; according to the kinetic theory.. " " -

ed because observation showed that the
‘motions of  two  neighboring particles

seemed quite uncorrelated with each
other. Other properties of Brownian mo-
tion were equally intriguing; for exam-
ple, the higher the temperature the faster
the motion, the smaller the particle the

nal equilibrium. The development of ..

Brownian Motion and Potential Theory
k“zT/z‘é‘discm}ery'kthat these two apparently unrelated branches
of physics are in some sense mathematically equivalent has
led to a new subject known as probabilistic potential theory

by Reuben Hersh and Richard J. Gl;'iegd

faster the motion, the more viscous the
medium the slower the motion. In addi- "~

tion; the g1ven particle appeared equally
likely to go inany direction, and the past -
motion of a particle seemed to -have no -

bearing on its future motion. Last but.

not least, the motion never stops.

The relation between temperature and

speed seemed to suggest 'a: molecula‘rj '
origin for the Browmian motion;"since”’
according to the kinetic theory of heat

- the temperature of any substance is pro- -

portional to the average of the squareof -
the speed of its molecules. Thus a higher

S

of heat higher temperature simply means more rapid molecular motion. Even the smallest

particle observable through a microscope, however, is far too large to show observable -  ' -
motion as a result of a series of kicks from one molecule at a time (left). Instead it has"’

been shown'that the random motion of a Brownian particle is caused by the random: dis- -

crepancy. between the molecular pressures on different surfaces of the particle (right).’ii
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) particle on a graph. The horizontal axis of the graph measures the distance traveled in a
! _-given direction, assuming that at a time ¢ = 0 the particle is at point x = 0. The vertical axis
‘mieasures the probability that the particle will be at any given point at time ¢ = 1, 10 and
100 seconds respectively for the three curves. Such symmetncal curves are called normal or
“Gaussian densities and represent the quantity e-2*/+Dt/ 2\/ 7Dt, where e is the base (equal
" t672.7182818) of a natural system of logarithms and D is the diffusivity of the medium.

be useful for explaining certain natural
phenomena. (This view, which is hardly
remembered today, is somewhat reminis-
cent of the way many physicists later
regarded the wave-particle duality of
quantum mechanics.) Einstein, reason-
‘ing on the basis of the kinetic theory of
heat, determined that if an observable
particle were in the midst of a molecular
bombardment, it would then describe a
random motion caused by the difference
in the number of blows it might receive
- at any instant on, say, its left and right
surfaces. The smaller the particle, the
more likely it would be that this differ-
ence would be sufficient to cause a de-
_tectable push. The less viscous the fluid,

" . temperature means more rapid average
“ molecular motion, and observation had
“already shown that hlghel temperature
./ means more rapid Brownian motion. On
. the other hand, any simpleminded notion
‘that the jerky movement of Brown’s par-
‘ticles was due 'merely to kicks from sin-
.gle molecules was out of the question.
* Even the smallest particle observable in
a microscope is far too large to show ob-
servable motion as a result of a series of
‘kicks from one molecule at a time.
A major advance came in the form of
-.a ‘theoretical analysis in statistical me-
““chanics completed by Albert Einstein in
1905, the year he published his first pa-
_per on relativity. At the time many lead-
~ing physical scientists, including Wil-
~hélim Ostwald and Ernst Mach, regarded
- molecules and atoms not as real entities
but’as intellectual figments that might

go as a result of each push. Once each
tiny step was stopped by the fluid’s vis-
cosity, any future motion would depend

NTUITIVE NOTION of what is involved in Norbert Wiener’s mathematical model of
Brownian motion can be obtained from this illustration. The black zigzag line is the path
. trdced out in a finite time period (in this case 11 seconds) by a one-dimensional motion that
" chariges direction only at the instants t = 1, = 2 and so on. If this process were continued
for an hour, say, there would be only a finite number of paths (23,600, t¢ he exact), and one
could say that the particle chooses one path at random in the sense that each path has a
* probability of 1/23.800; Such a process is called “random walk” or “drunkard’s walk.”
: " Wiener solved the problem of going to the limit of infinitely small time inerements.

'Ov'er a period of time such a hy

. ‘tion after-a certain number of secon

“‘that -one can state in a general W

=
L "EELLSHAPED CURVES result when one plots the successive positiohs of ‘a Brownian .

- 10 and 100 seconds respectively for

~original position and that the fast

“particle is to be there at any given t

the faster and farther the particle would

- of a’great many independent but es
tially identical random variables, in

- lations did he learn that the phena

 already long familiar.”

titious. In 1926 Jean Perrin received

and right surfaces, its ‘front
surfaces or its top and bottom sarface

thetical particle would tend to
from its original position. Its exactp

of course unpredictable; but it turns’

where the particle is likely to be. If;
experiment is performed many times ¢
the successive positions of the:par
are plotted on a graph, .one obtair
bell-shaped curve such as the cur
shown in the top illustration on this p4
The horizontal axis in each case
sures the distance traveled in any gi
direction, say left or right, assuming t
at time t = 0 the partlcle is at thep
x = 0. The vertical axis of the gr
measures the probability that the part
will be at any given point at time

three curves,
" Itis evident from such graphs that
most probable position is "always

away a position is, the less likely.

Moreover, the graphs are symme
since the ‘movement of the particl
unbiased between left and right. As
might expect, the three curves show|
the longer the particle drifts, the }
lier it is to wander from its starting po
Bell-shaped curves such as these
called normal or Gaussian distributi
and they typically arise in situat
where the measured quantity is the-

case the many little pushes that add
to the total motion.

It is remarkable and amusing that
after Einstein had completed his ca

non he was predicting was already
known! He wrote later: “My major_
in ‘this was to find facts which wou
guarantee as much as possible the
tence of atoms of definite finite size.
the midst of this I discovered that;
cording to atomistic theory, there won
have to be a’ movement of suspen:
microscopic particles open to obsé
tion, without knowing that observa
concerning the Brownian motion %

It was largely this work of Einst
that finally put out of fashion the
that molecules and atoms might b

Nobel prize for an experimental app
tion in 1909 of Einstein’s results. By ¢




1splacements and was thereby able to
ompute the diffusivity parameter D.
| According to Einstein’s formula, D=
L JRT/Nf, where Ris a universal constant,
LT is the absolute temperature, N is Avo-
adro’s number (the number of mole-
ules in a gram-molecular weight of a
as) and f is a viscosity coefficient. In
is way Perrin succeeded in obtaining a
alue for Avogadro’s number, one of the
undamental constants of neature: he
ound that N is approximately eqml to
X 1023,

A? far as physicists were concerned, Ein-
stein’s and Perrin’s investigations
ft the problem of Brownian motion in
easonably good shape; more recent work
as tried to refine and justify Einstein’s
aph alculations on the basis of the general
icle faxwell-Boltzmann equations of statis-
K cal mechanics. For mathematicians;
owever, the story does not really begin
ntil 1920, when Norbert Wiener wrote
is first paper on Brownian motion.
Whereas from a physical viewpoint
instein’s calculations and Perrin’s ex-
eriments had explained Brownian mo-
me. on quite adequately, from a mathe-
Tic, atical viewpoint the subject was still
ntalizingly confused. The heart of the
ifficulty was to make precise mathe-

one

hat atical sense out of the notion of a par-
ke- cle moving “at random.” Everyone
int nows what it means to pick between
are eads and tails at random; it means each
s, ternative has a probability of 1/2 (if
ons e assume that the toss is fair). The
o 'Brownian particle follows a path that is
en- some sense chosen at random . from

mong all possible paths. The set of all
ossible paths, however, is a very large
and complicated one, and it was one of
Wiener’s major achievements in mathe-

:2_ speak about choosing from this set at
vell random.

1m We shall not attempt here even to
uld summarize Wiener’s argument. None-

theless, an intuitive notion of what is in-
volved can be obtained by considering
the path traced out in a finite time pe-
uld riod (say an hour) by a one-dimensional
-motion, which changes direction only at
the instants ¢ = one second, t = two sec-
onds and so on [see bottom illustration
on opposite page]. In this case there are
only a finite number of possible paths
i’ (23600, to be exact), and one could say
iew that the Brownian particle chooses one
fic- path at random in the sense that each
the path has a probability of 1/23-600, Such
‘ a process, made up of discrete steps, is
sometimes called “random walk”

'ere

ica-

ob-

ing ctual ‘Br owman‘inovement Per-- -
as able to'measure the ‘predicted

matics to show in what sense one can

ELASTIC MEMBRANE is stretched across a stiff, closed frame that is twisted into some
fixed shape in space in this illustration of the role of harmonic functions in potential theory. -

-The configuration of such a membrane is given by the height h of each point P on the surface .

of the membrane. Directly below each B on the membrane is a point P on the base plane; "

which has coordinates x, y. Besides being continuous, the function k(x, y) has the follorwmg B

simple property: If P is a point in the x, y plane, and T is a small circle with its center at P,
then the value of k at P (that is, the height of the membrane above P) equals the average of .
the values of & for all points on the circle T. This is called the mean-value property, and a
continuous function % possessing this property is called a harmonic function; In this case

* the position.of P (the point on the membrane above P) is determined by the sum of the

tension forces exerted on P by the surrounding portion of the membrane (arrows). If the -
membrane is in equilibrium, these forces must cancel, so that the number of nearby ele-
vations greater than that of P must be matched by corresponding elevations lower than that
of P, and the average must be just equal to the elevation of P, namely, the function h at P. "

“drunkard’s walk.” The difficulty is in
going to the limit of infinitely small time
increments.

Wiener showed how to do this in a
mathematically legitimate way, thereby
bringing the term Brownian motion into
the language of mathematics. In the
Wiener process, as one refers to Wiener's

model of Brownian motion, the distances.

traveled are distributed according to a
Gaussian curve, just as they are in Ein-
stein’s physical model of Brownian mo-
tion. Moreover, Wiener proved that al-
most certainly (with a probability of 1)
the path is continuous but nowhere

smooth. This also fits very nicely with

physical intuition. A particle in Brown-
ian motion surely cannot jump instan-
taneously from one point to another, so
that the path should be continuous; er-
ratic changes in direction seem to be tak-
ing place constantly, so that one might
expect the path to consist entirely of
sharp corners.

Wiener's work has been continued by

a long line of successors; in a sense it is
the fountainhead of most modern work
in random processes, One of the most
fruitful outcomes of this work has been
its role in the development of probabilis-

tic potential theory. To explain the cir-.
cumstances that led to this highly suc--:
cessful merger it is necessary to turn;
briefly to classical, or nonprobablhstlc,
potential theory. .

. Potential theory is the mathematics .

of equilibrium. It studies harmonic

functions, which arise whenever one has

a homogeneous medium in a state of -

equilibrium. Consider an elastic mem-
closed

brane stretched across a stiff, =
frame that is twisted into some: fixed - -
shape in space [see illustration above].
The configuration of such a membrane

is given by the height h of each point £

on the surface of the membrane; Duectly A

below each point P on the membrane is
a point P in the base plane, which has

the coordinates x, . Thus if the coordi~"

nates x, y are given, then h is a de-
termined quantity; A is said to be "a'

function of x and y,” or in more concise -

symbolic terms, h = A(x, y). L

It is physically clear, and easy to prove =
mathematically, that h is continuous,
and moreover that it has the following .
simple property: If P is a point in-the " -

x, y plane, and T is a small circle w1th
its center at P, then the value of h at P ,




+ “(that is, the height of the membrane
above P) equals the average of the val-
ues of h for all points on the circle T.
This is called the mean-value property,
and a continuous function h possessing

" this property is called a harmonic func-
tion. In this case it can be seen that the

- position of P (the point on the mem-
brane above P) is determined by the
sum of tension forces exerted on P by

~the surrounding portion of the mem-
brane. If the membrane is in equilibri-
-um, these forces niust cancel, so that the
total of nearby elevations greater than
the elevation of P must be matched by
" corresponding_ elevations lower than the
~elevation of P, and the average must
- be ‘just equal to the elevation of B,
_-namely hatP.
Another physical problem leading to
a “harmonic function is the problem of
temperature equilibrium. In the theory
‘of heat flow (which long antedates the
kinetic theory of heat) it is known that
in a homogeneous solid the temperature

. atany point P tends to fall if the average
nearby temperature is lower than that at
P; it tends to rise if the average nearby

“temperature is higher than that at P. If

~=’thebody is in thermal equilibrium, so

- ~that the temperature at any given point

- does not change with time, then the tem-
perature at that point must equal the

““ average temperature over the surface of

a small surrounding sphere. In other
= ~words, the temperature T is a harmonic

~function of the coordinates %, y, z of the -

point P [see illustration below].

The remarkable discovery that all the
main problems and features of classical
potential theory have a mathematical
counterpart in the theory of Brownian
motion was foreshadowed in 1928 by the
work of Richard Courant, K. O. Fried-
richs and H. Lewy in Germany. The
mathematical equivalence of the two
theories has been fully exploited in the
past two decades by a host of mathemati-
cians, including Joseph Doob, Gilbert
Hunt and Mark Kac in the U.S,, E. B.
Dynkin in the U.S.S.R., P. A. Meye1 in
France and Shizuo Kakutani and K. Ito
of Japan.

The happy result of all this work is
that today any information available in
one theory can be translated into a theo-
rem in the other. In particular, it often
happens that what is difficult or obscure
in one theory is completely transparent
in the other., We shall now give several
examples to show how light can be shed
in either direction by this relation,

T he main connection between the the-

ory of Brownian motion and potential
theory is made by way of the central
problem of potential theory, which is
called the Dirichlet problem after the
German mathematician P. G. L. Dirich-
let. Suppose that in the foregoing exam-
ple of a body at thermal equilibrium the
temperature is measured at all points on

“-DISTRIBUTION OF HEAT in a homogeneous solid body at thermal equilibrium is an-
other physical problem that involves a harmonic function. Since the temperature at any

“. given point in such a hody does not change with time, the temperature at that point must
equal the average temperature over the surface of a small surrounding sphere. In other

. words, the temperature T is a harmonic function of the coordinates x, y, z of the point P.

-7 . The problem can be solved by means of the probabilistic theory of the Brownian motion of
- “a hypothetical particle starting at P and hitting the surface of the body at a random point Q.
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'the suxface of the body. Som

“where the particle first hits the boun

- point on the boundary.

hot and others are cold, and if ‘th
has been maintained in this state:
while, one can expect that a‘the
equilibrium has been attained in t
terior. The temperature in the int
varies from point to point, but at
fixed point it does not change with
From these assumptions can one
pute the interior temperature?

In mathematical terms what one
seeking here is a harmonic function,
fined in the interior of the body,
takes on certain known values or
surface, or boundary, of the body.
the membrane example the same mat]
matical problem has the following phy
cal interpretation: Given the positioi
the boundary of the membrane, comy
the position of the interior points.)
study of Dirichlet’s problem has o
pied the attention of many leading ma
ematical analysts of the past cen
Wiener made major contributions to
study, yet he never saw how his own't
ory of Brownian motion could be used
solve the Dirichlet problem; this was
done by Kakutani.

To explain Kakutani’s method we
sort to the language of Monte Carlo
Las Vegas. Considering once again
solid body of the foregoing exam
choose an interior point P at which o
wants to know the equilibrium tempe
ture. Having chosen P, one now pl
a  somewhat unconventional gamb}
game: Use the point P as the starting pé
sition for the Brownian motion of a p
ticle. Watch the particle. It will wande
around and eventually (with a proba
ity of 11} hit the boundary. Say it hit
a certain point Q. Then one wins
amount equal to the known tempera
at Q. Of course, it is a matter of chan

ary. In short, P is a determined point 3
the interior, whereas Q is a rando:

Obviously one will win at the most tk
maximum boundary temperature and
the least the minimum boundary tempe
ature. Moreover, as in any gamblin
game, there is a certain amount one ca
expect to win in the long run if one play
habitually. This quantity can be foun

simply by playing a great many tir
and computing one’s average winniig
We shall call this quantity the “expected
value” of P, or E(P) for short. The “ex
pectation” of the game is the amount:
rational gambler would be willing to pa
to the gambling house for the privileg

of playing. It is this quantity—the ex Wi"
pected winnings if one starts at P—tha ,'S]
a

is precisely Kakutani’s solution of t\
Dir 1chlet problem.



The 1de'1 is so 51mple tlmt (by neglect—
ing a few mathematical fine points) one
can readily verify that E(P) is indeed a
solution. First of all, it should be clear
that this expectation is a number. As we
have defined it, it is a number of dollars,
but we can equally well interpret it in
grees of temperature. Moreover, what
wumber it is clearly depends on what

dose to a hot part of the boundary, one
&an expect to win more than if one starts
aear a cold part of the boundary. Thus a
wumber is actually associated with each
terior point P. In order to verify that
£(P) is the equilibrium temperature (the

enly two criteria to check: first, that it
matches the known temperature on the
boundary, and second, that it is har-
onic (that it is continuous and has the
ean-value property) in the interior.

With respect to the first criterion, it is
ear that if one starts at a point P that is
tually on the boundary, then the game
over before it begins, and the payoff
£(P) is precisely the known temperature
4t the starting point; in other words,
= @ with a probability of 1. More-
over, it is plausible {(and can be proved
orously) that if one starts the particle
an interior point P sufficiently close to
particular boundary point Q,, then it
s almost certain that one will first hit
the boundary at a point very close to Q,,
that the expected winnings—the equi-

ry close to the known temperature at
Thus Kakutani's solution does have
e required boundary behavior. (In this
ument it is tacitly assumed that near
{4 the boundary is smooth and that the
undary temperature is continuous.)

Next one has to show that as a func-
n of P the expected value E(P) in this
me is a harmonic function. Again the
uired continuity is intuitively clear.
1 this means is that if the starting point
is changed very slightly, then the ex-
cted winnings are changed only slight-
The payoff obviously depends on the
lative distance of the starting point
am the hot and cold parts of the bound-
a slight change in starting position
ans a slight change in these distances.
What about the mean-value property?
is the only part of the argument
is not perfectly straightforward, in
it requires the introduction of what
fzht be called a gimmick. Draw a small
§;ere designated T' around P. Now, in
der to show that E is harmonic one has
how that E(P) is equal to the average
| the E(S)’s, where S is an arbitrary
t on the sphere I'. E(P) is the expect-

starting point one designates for the par- -
ticle in Brownian motion. If one starts -

solution of Dirichlet’s problem) there are

fium temperature assigned to P—is

| :
F N

g S5 9
3 3 -3
4 4 0 3 -
-1 -1 - i
: SUBTOTAL: 11 0 7
(13 SUBAVERAGE: 11/4 0 7/4
7
-4
3
A
TOTAL: 18
AVERAGE OF
AVERAGE: 18/12 = 3/2 SUBAVERAGES: 1/3 (1174 + 0 + 7/4) = 18/12 = 3/2

_ PRINCIPLE that the average of the subaverages equals the grand average is employed in "

the solution of the heat-distribution problem by means of probabilistic potential theory.

ed payoff of the game if the particle

starts out at P, Pick a point S on I, and
suppose that one considers only those
plays of the game in which the particle
first meets T precisely at S. Call the av-
erage winnings in these plays E(P/S).
Because Brownian motion has no pre-
ferred direction, each point S on T is

-equally likely to be the first, and so, by

the principle that the average of the sub-
averages equals the grand average [see
illustration above], one sees that E(P)
equals the average, taken over all points
SonT, of E(P/S).

The proof would be complete if it

were now possible to show that E(P/S)

is the same as E(S), E(S) being the ex-
pected winnings for a particle starting
at S, and E(P/S) being the expected
winnings for a particle starting at P and
first meeting T at S. At any instant, how-
ever, the particle in Brownian motion
behaves only on the basis of its present
position; it is not influenced by its past.
(This is called the “Markov property.”)
Therefore the expected behavior of a
path from P through S is no different
from the behavior of a path starting at §;
consequently E(S) does indeed equal
E(P/S). In physical terms this means
that one could solve the equilibriun
problem for heat flow or for a membrane

by observations of Brownian motion, or
conversely that one could find the ex-

pected outcome of a Brownian-motion
experiment simply by observing the
equilibrium configuration of a mem-
brane or a heat conductor.

A noteworthy feature of the proba-
bilistic method of solving the Dirichlet
problem is that the boundary can be as
irregular as one pleases. Other proce-
dures for solving the problem all encoun-
ter complications if the surface of the
domain is too “spiky” or “hairy.” (The
surface of a bulldog is all right, but not
the swface of a Saint Bernard or a
poodle.) In contrast the Brownian-mo-
tion solution is meaningful in all cases.
For a badly behaved boundary the pre-
scribed boundary values are taken “on

the average,” but not necessarily at each
point.

Having shown how the connection be-

tween Brownian motion and poten-- . i :

tial theory has been exploited to obtain
deep insights into classical -potential
theory by simple probabilistic ~ argu-
ments, we shall now give a few exam-:
ples, based on the work of Kakutani and
" Doob, of how, on the other hand, com-
plicated and deep questions in proba-
bility are sometimes equivalent to very
simple questions in potential theory.

Our first example is the “gambler’s
ruin” problem. Suppose that one of us
(Hersh) plays with an opponent (Griego)
at matching quarters. Hersh’s fortune at:
the start is N dollars. Griego has M dol-
lars. Hersh resolves to play until he ei-
ther “breaks the bank” (by winning M
dollars) or is “ruined” (by losing N dol-
lars).

ability that Hersh will be ruined? It is-
" intuitively clear that the answer depends

on the relative sizes of M and N. If N is ~ '

much less than M, ruin is very likely;
if N is much greater than M, Hersh is

pretty sure to break the bank. Whatmay -

not be clear is that it is possible to get
an exact answer! -

To do this we define a second game. ™ ~ .
Imagine that you (the reader) are an ' PG
onlooker at our quarter-matching. You . .:
watch our luck, and you bet a dollar that -~ -

Hersh will be ruined. If Hersh is ruined,
you win a dollar;" otherwise you win
nothing. What are your expected win-'

nings? Clearly they are equal to Hersh’s
probability of being ruined. Further- "
more, if we call x(t) Hersh’s net gain or. - i

loss at time ¢, then x changes from ome
instant to the next in the same way thata’
Brownian particle changes position. The
Brownian particle moves to the left or -

the right with equal probability; Hersh’s -

fortune increases or decreases with equal -
probability. The game is over when'
Hersh’s winnings x are either +M dol-

lars or —N dollars. This corresponds to - A

7i

The question is: What is the prob-"-




a4 partmle in Br

axis between' the pomts x=4M and
“%'=—N. The probability of ruin is the
‘probability that the particle first hits the
“left boundary (x = —N) and not the right
“boundary - (x = M). That means your
» game has a payoff equal to 1 if the par-
ticle ‘first hits the left boundary and a
payoff equal to 0 if it first hits the right
‘boundary. This corresponds precisely to
.-a Dirichlet problem for a one-dimension-
<al domain (the interval between x == —N
.and x = M) with boundary values 1 at
¥=-NandQatx =M.

. "We could consider the corresponding
equilibrium-temperature problem, but
_it is even simpler in this case to visualize
-a-membrane problem. In fact, since our

i domain is one-dimensional (a part of the

% axis) we must consider a one-dimen-
. ional elastic, say a stretched rubber
- band. Everyone knows that the equilib-
iium position of a stretched rubber band
-is a straight line. Since in this case the
particle representing Hersh’s winnings
starts at x = 0, we are interested in the
“height of the rubber band above the
ppoint x = 0. Simple geometry shows that
t is just M/(M + N) [see illustration be-
“low]. This, then, is Hershs probability
of being ruined.
*-The method we have employed here is
" a'simple and powerful one. We essen-
“tially - constructed a special Dirichlet
-problem, taking care to choose the do-
“main -and the boundary values stra-

-ONE-DIMENSIONAL ELASTIC (in this case a rubber band stretched betweeh two pegs in' -

teglca Ys

have ‘an-interesting plobablhstxc inter-

pretation. The solution was available by
inspection because the associated equi-
librium configuration was so extremely
simple.

Our next example will require a little

more acquaintance with potential
theory, but it will yield a much deeper
probabilistic result. Choose a fixed point
as-an “origin,” and consider the domain
D of all points P whose distance from
tle origin is greater than ¢ and less than
K. Here, as usual, ¢ is supposed to be
a small positive number and K a very
large one. In three-dimensional space
D is the region between two concentric
spheres, an inner one of radius ¢ and an

outer one of radius K. In two dimen-

sions the same conditions describe a ring
between two concentric circles. In one
dimension 9D is a pair of disconnected
intervals, one to the right and one to the
left of the origin [see illustration on page
74]. In each case we pose a Dirichlet
problem by asking for a function u that
is harmonic in & and equal to 1 on the
inner surface and 0 on the outer surface,
What is the solution?

In one dimension, as in the stretched

rubber band, the only harmonic func- .

tions u(x) are those that have straight
lines as their graphs. A comparable con-
struction shows that in the one-dimen-
sional case the solution to the present

~a wall) is considered in finding a solution to the “gambler’s ruin” problem by means of
.. probabilistic potential theory. The game is matching quarters. One player (Hersh) has a
-fortune of N dollars at the start. The other player (Griego) has M dollars. Hersh resolves
 to play until he either “breaks the bank” (by winning M dollars) or is “ruined” (by losing

i.= N dollars). In the theory of Brownian motion the particle representing Hersh’s winnings

‘“étarts at x — 0, and the probability of ruin is the probability that the particle first hits the
Ieft boundary (x = —NN) and not the right boundary (x —= +-M). This means that an on-
- Jooker’s game has a payoff equal to 1 if the particle first hits the left boundary and a payoff
équal to 0 if it first hits the right boundary. Since the equilibrium position of a stretched
~-yubber band is a straight line, Hersh’s probability of being ruined is the height of the rub-

:‘ber band above the point x =

0. Simple geometry shows that this value is just M/ (M 4 N).

greatel

than " ¢
(K —¢) forx less‘t an=e. :

Just as in the gambler’ s-ruin p:oblem
u(x) signifies the probability that if
particle starts at position x, it will
the inner boundary (which is given
payoff equal to 1) before the oute

“boundary (which is given a payoff equ
to 0). The formulas given above sho

that if K is very large, u is very close t
1. It is possible to take the limit of u(x
as K goes to infinity; then u = 1 for all
and all e. Since the outer boundary ha
now ‘vanished to infinity, D is just th
set of all points outside the interval fro;
—e to. +e, and u(x) is the probability
that a particle starting at x will eventual--
ly touch that interval. Since u =1,
follows that the particle is almost certair
to do so. Because both the origin and the:
starting position x are arbitrary, the par--
ticle will arrive at every point on the
line. Having arrived there, the same ar-
gument applies once more to the future,’
so that it will in fact almost certainly-
return infinitely many times to every:
point. This property is described by th
term “recurrent,” and what we have’

~ shown is that Brownian motion in one!
- dimension is recurrent.

To consider the same question in tw
or three dimensions, one needs 't
know only the solutions of the corre-.
sponding -two- and three-dimensional:
Dirichlet problems, with the boundary
values 1 assigned on the inner boundar
and 0 on the outer boundary. Simple con
siderations, which would be out of plac
in this article but which require only ele
mentary calculus to carry out, show tha
in two dimensions the solution to our:
Dirichlet problem for a circular ring i
u(r) = (log K —log r)/(log K — log &)

-where log denotes logarithm. In thre

dimensions, for a spherical shell, the so
lution is «(R) = (1/K — 1/R)/(1/K
1/¢). We use r to denote distance to th
origin in the plane, and R to denote dis
tance to the origin in three-space. I
each case r and R are numbers betwee
eand K. o
These functions u{r) and u(R) hav
the same probabilistic meaning as th
u(x) we just obtained in the one-dimen
sional case; they give the probabili
that a particle, starting at r or R units;
from the origin, will hit the inner bound
ary before it hits the outer one.

The interesting question is: What '

happens as K becomes extremely!large?
. Since log K goes to infinity as K goes to*

infinity, we see that in two dimension
as in one, Brownian motion is recurren
that is, the particle is almost sure to re-!




-K -£ .0 > ' K

.“DEEP RESULT in probability theory is obtained in the process of solving the following
problem: Choose a fixed point as an “origin,” and consider the domain <D of all points P
whose distance from the origin is greater than ¢ and less than K. (¢ is supposed to be a very
‘small positive namber and K a very large one.) In three-dimensional space (top) <D is the
region between two concentric spheres, an inner one of radius ¢ and an outer one of radius
: K In two dimensions (middle) the same conditions describe a ring between two concentric

‘the right and one to the left of the origin. In each case the problem is to find a funec-
«tion u that is harmenic in Dand equal to 1 on the inner surface and 0 on the outer surface.
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s less than 1, there is a. pos1t1v pro
 bility. that the particle will wander
.and neve1 return, There is, so to sp
“‘more  room  in: three-space to’ - esca
" Thus. B10wmau motioi in thre
o smns is nonrectirrent. ‘This 1es.u1t W

we have obtamed with modest effor

a deep result in p1obab1hty theor

i “have defined is known as the capacito

of aset.Bisan ;mpmtant notion of ¢l
' cal potentlal theoxy, it is a functio
. monic outside B, ‘equal'to 1 inside B

‘The " interconnection - between - ¢lassi
--depends heavily on the fact that Br

its past behavior; |

- of Riesz potentials corresponds to w

“citcles. In one dimension (bottom) the domain is a pair of disconnected intervals, one to '

“The function  u(R) = ‘e/R, which
have just ‘considered, .can be extend:
by setting it equal to 1 for R less t
or equal to z. The extended function

potential of the spliereS ., with'radiug
and center: at 0. The capamtory” oter

equal to O very far from B (at mﬁn y)

Just as in the specml case of 'S¢}
very general cases the capacitory po
tial of B is simply the probability tha
Brownian particle, starting at a.g
point, will ever hit B. Indeed, alinost
same arguments applied to the ‘cas
a sphere would show that the probabil
is equal to 1 for a starting point insid
is ‘harmonic for a:starting point outs
B and is small at great distances fro

Current work in-this area has yield
far-reaching * -generalizations-. of *
Brownian-motion ‘and potential the

potential theory and:Brownian moti

ian' motion is & Markov process, that,

its present ‘behavior is not influenced’

have shown'that in' a.very 1eal 5e
every decent’ Markov .process /cor
sponds to some generalized - potent
theory. For example, the classical theo

are called the stable processes of proba
bility theory. Moreover, Markov chaii
(which are discrete Markoy processe
have their own potential theories.

Thus the probabilistic viewpoint:§
potential theory has unified and clarif
the underlying principles of poten
theory, and conversely concepts bos
rowed from potential theory and appl
to 'probability theory have demonstra
the deep analytic structure of Mark
processes. This has helped to end 't
isoldtion in the mathematical realm
probability theory has suffered from
some degree in the past.




