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Abstract 
Definitions of autonomous agents—simple living systems—
have often included the thermodynamic idea that agents 
need to do work to construct constraints and to maintain 
these constraints. We show that an ant-pheromone system is 
sufficiently rich to allow an explanation of its behavior in 
terms of thermodynamic properties, particularly the work 
done by the system on itself to build structure. This work is 
done by an inward pressure whose origin is the ant-
pheromone system itself. The degree of structure formed by 
the system can be traced back to the behavioral rules of each 
of the ants—the more relevant information each ant is given 
in its behavioral repertoire, the more work is done by the 
system in compressing itself, and the tighter and more 
constrained is the final structure. The language introduced 
in this paper can serve as a framework for quantifying the 
propensity of a system to do work, self-organize and 
coalesce into life. 

Introduction 
Several studies of self-organizing systems have focused on 
the progress of these systems from an initial state of 
randomness, with no detectable structure, to one of 
structure and organization. There are many examples of 
systems that show this kind of behavior, and the innate 
tendency toward structure-formation is interesting but still 
little understood from a microscopic point of view. Pattern 
formation has also been widely studied, but, again, the 
viewpoint has been largely phenomenological and 
macroscopic rather than microscopic.  
 
In addition to the emergence of structure in self-organizing 
systems, the maintenance of structure, and the apparent 
function served by it, is beginning to be studied. 
Importantly, some fairly recent definitions of the most basic 
kinds of living systems have focused on the thermodynamic 
activities they perform (Kauffman, 2000, 2003; Kugler and 
Turvey, 1987) 
 
This paper extends the work of Guerin and Kunkle (2004) 
in which a very simple agent-based model of ant foraging 
was constructed and the processes leading to structure 
formation, structure maintenance, and structure decay were 
studied. It was found that these three features—commonly 
observed in complex system agent-based models— could 
be explained in terms of ideas from equilibrium and non-
equilibrium thermodynamics. For example, when a system 
forms an organization, it appears to move from a state of 
high disorder, or, in thermodynamic terms, high entropy, to 

a state of low entropy. The second law of thermodynamics 
contradicts such a change, and, in the simple ant system, it 
was observed that an initial increase in entropy might 
account for the eventual drop in entropy. Such increases in 
entropy, which enable the formation of organization, are 
the mainstay of non-equilibrium thermodynamics (Atkins, 
1984; Prigogine, 1962, 1984; Haken, 2000; and Schneider 
and Kay, 1995; Swenson and Turvey, 1992) 
 
At the structure maintenance stage, the system has set up a 
positive feedback loop in which the ants, because they are 
very localized, deposit pheromones which are also 
localized, and which, in turn, cause the ants to localize 
further. The system requires an influx of food to maintain 
it, or a decay of the structure is observed. The purpose of 
this paper is to extend the thermodynamic analysis of the 
system—chiefly through the introduction of the concept of 
work—and to tie these ideas into a living systems 
framework along the lines of Kauffman (2000).  
 
As explained previously, the ant system initially increases 
its disorder and then begins to organize and form a 
structure, decreasing its disorder in the process. We 
imagine a pressure acting inward on the system, causing 
ants to stop diffusing outward and come back to the nest 
and food-source, forming coherent pheromone tracks. Of 
course, this pressure is nothing as crude as that provided by 
a piston, compressing a gas in a chamber during the 
compression leg of an engine cycle—the ant-pheromone 
system is not, after all, simply squashed by our imaginary 
pressure; the process is closer to a condensation. However, 
as a first approximation, the idea of a piston compression is 
useful in that we are permitted to talk about the work done 
by the piston during its motion. By measuring the change in 
the motion of the ants away from their origin we show that 
something like an inward pressure is acting on the system. 
In thermodynamics, this pressure is multiplied—in 
infinitesimal steps—by the induced volume change to give 
the work done.  
 
The source of this inward pressure has to reside in the ant-
pheromone system itself, given that there are no other 
external components to our model. It is, therefore, in the 
behavioral rules of the ants and pheromones, along with 
any relevant initial conditions, that we should find the 
propensity of the system to exert this pressure on itself, and 
thereby do work on itself. We alter the rules of the ants to 
test this idea. Two rules that were added to the behavioral 



repertoire of the ants in the model of Guerin and Kunkle 
(2004) are successively removed and the results on the 
character of the final structures formed, are observed. We 
find that, for the rule changes imposed, the pressure—and, 
therefore, the amount of work done by the system—is 
strongly affected. Effectively, the more informed the agents 
are about the task they are supposed to perform (as dictated 
by us, the model builders, and as reflected in the rules each 
agent is given) the more work the system is capable of 
performing in constructing the ant-pheromone structure, 
and the more efficiently the system can perform the task of 
bringing food back to the nest.  
 
The formation of structure can also be thought of as the 
construction of constraints, and the system can be seen to 
be doing work to construct constraints. In the language of 
Kauffman, these constraints then enable the system to 
perform a task, to do at least one thermodynamic work 
cycle and to construct further constraints. Here is a 
definition of an autonomous agent or living system. Our 
model, in its simplicity, seems to permit an analysis very 
much along these lines and may provide a framework to 
further elucidate the ways in which systems of distributed, 
simple agents coalesce into life. 

 
Experimental Setup 

 
The following simulation of food gathering ants is 
presented for the purpose of calculating statistical and 
thermodynamic measures that help characterize phases of 
self-organization. The spirit of this model is an extension of 
the work of Parunak and Brueckner (2001) and Gutowitz 
(1993). 

The ant system described here is discrete; the positions of 
all objects in the system are specified by a 2-tuple of 
integers (x, y). The space of positions is a square grid. The 
three types of objects are nests, food, and ants. Ants and the 
environment are modeled as active agents in the simulation. 
Additionally, each position in the space can contain some 
amount of nest pheromone and food pheromone, which are 
deposited by the ants as they move. 

A basic simulation is set up as follows: A nest and some 
amount of food are placed in the space. A fixed number of 
ants is initially placed at the nest. All positions have zero 
levels of both food and nest pheromones. The system 
evolves as the ants move, drop pheromone, and transport 
food. The model is flexible to later allow experimentation 
of initially placing ants at any location in the space and to 
allow any type of object (nests, food, ants) to be introduced 
at any time or position. 

An ant can hold one unit of food at a time and can take one 
of three actions: 1) move to one of eight adjacent locations 
(includes diagonal moves), 2) pick up a unit of food, and 3) 
drop a unit of food at a nest. The following pseudo-code 
describes what actions an ant will take on each time step: 

if ant has food then 
 drop one unit of food pheromone 
 if at nest then 
  drop food 
 else 
  follow nest pheromones 
 end if 
else 
 drop one unit of nest pheromone 
 if at food then 
  pick up food 
 else 
  follow food pheromones 
 end if 
end if 
 
Also, each time step some percentage of the pheromone 
present at each position “evaporates”, or is removed. 
Pheromone evaporation allows adaptation to changes in 
food location. For example, if there were two food sources 
present, A and B, and the ants were exploiting A for a 
period of time a strong trail of pheromones would be laid 
between the nest and A. Once the food at A is gone the ants 
should no longer follow that trail, but should rather explore 
again to find B. If the pheromones leading to A do not 
evaporate this cannot occur. The decay or forgetting of 
constructed constraints (pheromone trails) allows the 
system to be adaptive. 

The ants have directionality. They can only travel to their 
forward five positions instead of choosing from all eight 
adjacent positions. This local directionality is present 
regardless of the state of the system and is an example of a 
context-free constraint (Juarrero, 1999). The direction of 
an ant is calculated after each step based on the previous 
and current positions. At time zero each ant chooses a 
random direction.  

In addition to this directionality, ants are given a behavior 
that turns them around when they reach their goal—either 
the food-source or the nest. In the main set of experiments 
performed for this paper, the turnaround behavior and the 
ant directionality are successively turned off to observe the 
result on the ant-pheromone structure formed when the 
system reaches a steady state. The turnaround and 
directionality behaviors were originally included to make 
the system more efficient at reaching a structured steady 
state, but these behaviors constitute information about the 
environment and it is central to this paper to observe the 
macroscopic effect of removing this information from the 
microscopic actors. 

 



Figure 1. Examples of possible next steps (in gray) for an ant 
according to the last step taken. Ants have hard context-free 
constraints preventing backwards movement. 

Each time step ants measure a local gradient then choose a 
direction to step. Pheromone levels are read from the 
forward five positions. The probability of moving to 
position j is given by:  

 

 

 
(1) 

where µj is the pheromone level at position j; α is a scaling 
exponent; β is a random base; and the denominator 
represents the total pheromone level in all possible next 
positions. In this case N is five. The scaling exponent α 
increases the probability that the next position will be the 
one with the greatest pheromone level, whereas the random 
base β has the opposite effect. Typical values used in our 
experiments were α = 3, β = 1, and a maximum pheromone 
level of 511 at any one position. These parameters can be 
adjusted to tune the likelihood that an ant will explore for 
new food versus exploiting a found food source.  

So, the movement of an ant is constrained by a measure of 
change not an absolute strength. One can think of the 
gradient as the spatial first derivative of the pheromone 
field. 

Figure 2 graphically depicts four phases of the typical 
evolution of this ant system. In the next section, measures 
of constraint and spatial entropy are defined as tools for 
examining the construction and destruction of constraints in 
this self-organizing system. 

 

Figure 2. Typical evolution of the ant system. (a) Bootstrapping 
– Gradient Creation: Ants move randomly out from the nest, 
creating a gradient of nest pheromones. (b) Structure Formation: 
Some ants find the food and begin following the nest pheromones 
while dropping food pheromones that food-seeking ants begin to 
follow. (c) Structure Maintenance: A stable path of both food and 
nest pheromones is established. As shown in the upper-right 
corner, cycles that do not transport food can also form. (d) Re-
exploration: Once all of the food has been transported to the nest 
the pheromones begin to evaporate and the ants disperse. 

Constraint and Spatial Entropy Measures 
As a system self-organizes, components of the system are 
expected to lose degrees of freedom through the emergence 
of context-sensitive constraints (Juarrero, 1999). In this 
system, ants lose directional degrees of freedom as they are 
informed by a gradient. We measure this constraint in our 
model with a directional entropy. An ant that sees no 
pheromone gradient, which is an equal level of pheromone 
in all possible next positions, is said to be maximally 
ignorant with an ignorance level of 1. An ant that has no 
choice but to move to one specific position on the next step 
would have an ignorance of 0, though this never occurs 
here because of the random base added to seach pheromone 
level as described in Eq. 1. The Shannon entropy (Shannon, 
1948a, 1948b) of the probabilities of moving to each of the 
possible positions on the next step defines the ignorance for 
each ant 

 

(2) 

where pn is the probability of moving to position n, and N is 
the number of possible next positions, in this case five. The 
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denominator is used to normalize the value to the range 
[0,1]. The ignorance of a group of ants is defined as the 
average ignorance of all ants. 

As systems self-organize, statistical measures of order 
increase. In this model, we capture increased order with a 
spatial entropy measure applied to the positions of ants. 
The spatial entropy measure is also a Shannon entropy of 
the form shown in Eq. 2 where pn is the proportion of all 
ants at position n, and N is the total number of positions in 
the space. Note that in the case of zero ants being at a 
location 0 log 0 = 0. The maximum spatial entropy is 
achieved with an equal number of ants at each position and 
the minimum with all ants at a single location. 

Experimental Results 

Summary of Model Dynamics 
As a first step in presenting our results, we summarize the 
dynamics of the system for typical model runs. All results 
given in this summary are based on an average over 20 runs 
with the same initial conditions. The space was 21 positions 
square, with a single nest at position (7,7), a single food 
source at position (15,15), and all ants starting at the nest.  
 
An indicator of which phase the system is in (i.e. an order 
parameter) could be the mean path length of the ants. The 
path length of an ant at a given time is defined as the 
number of steps it has taken since it last picked up or 
dropped a unit of food. Figure 3 shows the four phases of 
development with a plot of mean path length vs. time. In 
the bootstrap phase the mean path length increases 
uniformly. The line in this case has a slope of one because 
each ant takes one step per unit time and no ants have yet 
found food. The structure formation phase begins when 
food is found which leads to a rapid decrease in the mean 
path length. During the structure maintenance phase, mean 
path length remains stable at a near minimum value (the 
shortest distance between the nest and food). When the 
food source is depleted, the mean path length again 
increases as the ants re-explore the space for alternative 
food sources. 

 
Fig. 3. The four phases of development are clearly visible 
in this plot of the ants’ mean path length at each time step. 
A path length is calculated as the number of steps an ant 
has taken since it last picked up or dropped a unit of food. 

 
Figure 4 displays the spatial entropy and ignorance for all 
ants over the first 100 time steps of an experiment with an 
inexhaustible food source. The bootstrapping phase occurs 
over approximately the first 25 time steps. In this phase, the 
ants’ random walk from the nest causes a rapid increase in 
spatial entropy and the establishment of a nest pheromone 
gradient around the nest. In the structure formation phase 
ants that find food use this gradient to direct their return to 
the nest. The food-carrying ants’ constrained movement is 
reflected in a reduction of overall ant ignorance as the 
gradient informs them to the nest 
location.

 
Figure 4. A comparison of the spatial entropy and ignorance of 
ants over time. In the bootstrapping – gradient creation phase the 
spatial entropy of the ants increases, which establishes a gradient 
of pheromones around the nest. In the structure formation phase 
the ignorance of the ants decreases as they find food and begin to 
follow the nest pheromones back. The spatial entropy of the ants 
also begins to decrease when a path is formed between the nest 
and food. The structure maintenance phase begins when the 
spatial entropy and ignorance of the ants becomes relatively 
constant. 

System Pressure 
During the bootstrapping phase, when ants are moving 
away from the nest in all directions, we can chart the 
tendency of the system to expand by looking at a specific 
measure. If we refer to the nest and food locations as 
goals—given that each ant is seeking either food or nest—
we can, at each time-step, calculate the distance of each ant 
from its goal. This distance is obtained by a simple 
Euclidian calculation. In a time-step, this distance will 
change for each ant: we call an increase in the distance 
positive and a decrease negative.  The sum of these 



distance-changes at each time-step constitutes our measure 
P, the system pressure. When the system has self-
organized, almost every ant will decrease its distance from 
its goal at every time-step and, therefore, the measure will 
be large and negative. At the beginning of each model run, 
most ants will increase their distance from their goals at 
every time-step and so the measure will be positive. The 
behavior of P follows our intuition for the self-imposed 
pressure of the system: positive at first, and finally, after the 
structure has formed, large and negative.  
 

 
Figure 5 The evolution of the pressure in the system. Initially, 
the ants are mostly moving away from their goals, albeit 
randomly, giving a positive overall system pressure. When the 
structure has fully formed—around step 200 here—the pressure is 
strongly negative: the ants are nearly always moving toward their 
goals. 

Total Work Done by the System 
By changing the rules governing the ant behaviors we can 
investigate the influence of these rules on the final self-
organized structure of the system and the work done in 
forming this structure.  We look at three rule settings: 
 

1)  Basic ants 
2)  Basic ants with directional motion 
3)  Basic ants with directional motion and turnaround 

behavior 
 
The 'basic ant' indicated above is simply an ant with no 
directional behavior i.e. no directional rule or turnaround 
behavior when the ant reaches food or nest. Statistics are 
compiled over 1000 runs. For each case, we calculate the 
number of food pieces picked up during an entire model 
run, and the average final directional entropy of the ants. 
Table 1 shows these values. 
 
 

 

Table 1  Experiments performed on the ant systems in which the 
rules of the ants were changed. The measured quantities are the 
total food picked up by ants in a model run, the average 
directional entropy at the end of the runs, and the maximum 
directional entropy. 

 
The trend observed is clear. As we add behavioral rules to 
the ants, the final value of the directional entropy 
decreases—the pattern formed by the ant-pheromone 
system when the model run has settled into a steady state 
becomes tighter and more confined with more behavioral 
rules. The ants themselves are more constrained to their 
paths. This trend is even clearer if we look at the fourth 
column in Table 1, which shows the maximum value of the 
average directional entropy of the ants in the 1000 models 
runs.   
 
We can interpret the evolution of the population of ants—
from a state in which they choose equally from the 
available directions of motion to one in which they are 
much more constrained—as a thermodynamic effect. Work 
has been done on the ants in reducing their directional 
entropies and the average entropy change, from a maximum 
initial value to the final value, is a measure of the work 
done.  
 
The number of food pieces picked up by the ant population 
during the runs also increases as rules are added. The 
system performs a task—transferring food from the source 
to the nest—more efficiently with added rules. It should be 
noted that the ant rules are specific to this system—not just 
any accumulation of rules would have resulted in the 
observed trends. But, it can be said that the more 
information we give the agents, in the form of behavioral 
rules, the greater the potential the system has to do work to 
form structure.  

Conclusions 

The ant-pheromone system has been shown to impose on 
itself an inward pressure, which causes it to organize from a 
state of random ant motion and pheromone placement to 
confined ant-pheromone tracks. The motion of the ants in 
these tracks is very constrained and we can say that the 
inward system pressure has done work in constructing these 

Experiment 

No. 
Food 
Pieces 

Directional 
entropy 

Max. 
Directional 

Entropy 

1 8 0.090 0.49 

2 2074 0.055 0.19 

3 3367 0.016 0.05 



constraints and confining the system.  
 
When system specific rules are added to each ant, the 
structure formed becomes progressively more constrained 
and the system does more work to bring itself to its 
confined state. The extra rule information with which each 
agent is armed is expressed macroscopically by the greater 
overall work done by the system in constraining itself.  
 
Our measure for system pressure is maintained at a high 
negative value as long as there is a sufficient supply of food 
and this may indicate that the system continues to do work 
to maintain its constraints. Kauffman's (2000) idea that an 
autonomous agent should perform work cycles is relevant 
here—our system, once assembled may be said to be 
performing work cycles to maintain itself. As a self-
assembling, work cycle performing agent system, 
consuming food to maintain its structure, the ant-
pheromone system might be said to be an archetypical 
living system minus the ability to reproduce itself. 
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