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1. Introduction. The motivating problem for this paper is to determine which

topological properties, such as compactness, admit operations analogous to the

Stone-Cech compactification. To be formal, we shall let T denote the category

of topological spaces and continuous functions. We then consider the problem

of finding those full subcategories P of T for which the injection functor from P

into T has an adjoint F : T -* P or a coadjoint G : T -» P. A condition equivalent

to the existence of such adjoints is mentioned in the paragraph concerning notation

in §1.1. Sometimes the terms "left adjoint" and "right adjoint" are used instead

of "adjoint" and "coadjoint," e.g., contrast [8] with [6]. We are indebted to the

referee for a number of helpful suggestions, particularly for calling our attention

to the following convenient definition. (It is an adaptation of terminology used

by Freyd in [3].)

Definition. A category B is reflective in A if B is a full subcategory of A such that

the injection functor from B into A has an adjoint F: A -* B. In this case, £ is the

reflective functor (or reflector) associated with B.

Dually, B is coreflective in A if the injection functor admits a coadjoint G: A -* B

known as the coreflective functor (or coreflector) associated with B.

Note. We have, for the sake of convenience, modified the usual definition of

"reflective subcategory" which would result if the word "full" were deleted from

the above definition.

In this paper we shall find conditions on a subcategory B equivalent to the

existence of a reflective functor, F:A-*B, which satisfies a certain kind of

functorial equation. This result enables us to classify reflective and coreflective

subcategories of T. All coreflective subcategories are of the same type and

Theorem A gives necessary and sufficient conditions for a subcategory of T to be

coreflective. Theorems B, C and D describe three types of reflective subcategories.

We do not know whether these three types include all of the reflective subcategories

of T.
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In the remainder of this section, we shall develop enough terminology to state

these main results, for the case of the category T. Our most general theorems

are in §2. In §3 we shall prove Theorems A, B, C and D by showing that they

reduce to special cases of the general results of §2. By the same method analogous

results for uniform spaces can be proven (as indicated in §3).

Our topological conventions will be based on Kelley's General topology [7].

Thus an object of T is an ordered pair, 04, L), where L is the family of all open

subsets of the underlying set A.

1.1. Classification of reflective and coreflective functors on T.

Notation. Our notation for reflective functors (on any category) will be based

on [8]. If F: A^B is a reflector then there exists a front adjunction map, as

defined in [8] and [6], which will always be denoted herein by ex e Hom(X, F(X)).

The characteristic properties of this map are that eYf = Fif)ex for all/e Hom(X, Y)

and, defining iex)*ig) as gex, the function (ex)*: Horn(F(X),Q)-> Horn (X,Q)

is one-to-one and onto whenever QeB. (By "geß," we mean that Q is an object

of B.) The reflectivity of £ is equivalent to the existence of such maps {ex}. Dually,

if G: A -> B is a coreflector then the end adjunction map will always be denoted

herein by sx e Hom(G(X), X) and we define (ex)^(g) as sxg.

Definition.Let £: T-» P be a reflector defined on the category of topological

spaces. £ is a simple reflector if ex: X -» F(X) is one-to-one and onto for all X.

F is an identifying reflector if ex maps X onto F(X) for all X.

F is an embedding reflector if each object of P is a Hausdorff space and if

ex(X) is a dense subset of £(X) for all X.

Definition. The full subcategory P is simple (resp. identifying, or embedding)

iff there exists a simple (resp. identifying, or embedding) reflector £: T -> P.

Definition. A coreflector G: T->P is cosimple if ex: G(X)-+X is one-to-one

and onto for all X.

1.2. Classification of topological properties. By a topological property P,

we mean a full subcategory of T which is closed under the formation of equivalent

( = homeomorphic) objects. (In general such subcategories are called replete.)

The following definition extends a definition in Kelley, [7, p. 133].

Definition. A topological property P is hereditary (resp. divisible, productive,

or coproductive) if the objects of P are closed under the formation of relative

subspaces (resp. quotient spaces, product spaces, or coproduct spaces.)

Note. The terms "quotient space" and "relative subspace" are used in their

topological sense which is much more specialized than the category theoretic

terms of "quotient object" and "subobject," (cf. the note in §1.3).

The topological product is equivalent to the category product. The category

theoretic coproduct exists in T but seems to have been ignored by Kelley. Con-

ceptually, the coproduct of a family of spaces is simply their disjoint union.

To be explicit we shall let {(Ax, L)} be an indexed family of spaces. We shall

assume that A C\A   = 0 for i ^ j. The conroduct of this family is then (horneo-
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morphic to) the space (A, L), where A = {JA-, and L is the topology generated

byljl,-
The category theoretic definition of the product and its dual notion of the

coproduct (also known as the sum) can be found in [3] or [8], (Briefly, an object

X together with projection morphisms, p¡ : X -* X¡ is a product of the indexed

family of objects {Xj iff for each indexed collection {/} with each/ e Horn ( Y, X¡),

there is a unique fe Horn(Y,X) such that pj =/ for all i. We shall often write

x=l\xt.)
We shall also classify topological properties by using the following two defi-

nitions.

Definition. A topological property P is closed-hereditary if AeP whenever^

is a closed subset (with the relative topology) of some QeP.

Definition. A topological property Pis nontrivial if P contains at least one

non void space.

1.3. Statements of main results concerning T. Suppose £: T -> P is a reflector

(or coreflector). If we let P' be the topological property generated by the full

subcategory P, then F: T -> P' is still a reflector (or coreflector). Hence we are

justified in restricting our attention to those (co)reflective functors £ : T -* P

for which P is a topological property.

Theorem A. A topological property P is coreflective iff P is nontrivial,

divisible and coproductive. Moreover, every coreflective functor with nontrivial

range is cosimple.

Theorem B. A topological property P is simple iff P is hereditary, productive

and contains every indiscrete space.

Theorem C. A topological property P is identifying iff P is hereditary and

productive.

Theorem D. A topological property P is embedding iff P is closed-hereditary,

productive and contains only Hausdorff spaces.

The most famous example of a reflector on T is a probably the Stone-Cech

compactification. The Hewitt realcompactification, described in [4], is another

embedding reflector. Other reflective properties are formed by the classes of all

T0, Tx, T2, and T3 spaces ; the class of all regular spaces ; the completely regular

spaces and even the class of all totally disconnected spaces.

The classes of all locally connected and of all locally arcwise connected spaces

form coreflective subcategories (e.g., see [10] and [11]).

Note. Theorem C generalizes a category theoretic result stated in [3] that P is

reflective in T if P is productive and closed under the formation of subobjects.

One can show that the classes of all T0, Tx and T2 spaces are closed under sub-

object formation whereas the class of regular spaces is not. For example, let / be
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the set of irrational numbers. Let S be the standard topology on the real line,

R, and let N be the nonstandard topology generated by S U {/}. A basic N-open

set has the form (a, b) or (a, b) n I. Now N is not regular since Q = R — I is

JV-closed but yj2 and Q cannot be separated by disjoint N-open sets. However,

(R,N) is a subobject of (R,S) since the continuous function lR : (R,N)^(R,S)

is a monic morphism (i.e., left cancellable).

There is a topological characterization of those identifying reflectors F: T-+P

for which P is closed under subobject formation. One can show by closely exam-

ining the constructions given in Theorem 2.5 and also in §3.3 that ex : X -* F(X)

is always a quotient map in the topological sense iff P is closed under subobject

formation iff P is closed under "super-topologies," meaning that if L and M are

topologies on A with L^M and (A,L)eP, then (A,M)eP.

1.4. Preliminary observations. In this section we shall prove a lemma which

will enable us, in effect, to make several simplifying assumptions concerning

reflective functors.

Lemma 1.1. If F: A^B is a reflector and if QeB, then eeeHom(Q, £(g))

is an equivalence.

Proof. Let e = ee. Since e*: Hom(£(0,Q) -> Hom(<2,g) is onto, there is a j

such that e*(j) =je = lQ. On the other hand, e*(ej) = eje = e = e*(lF(Q)) and hence

ej = 1F(Q) as e* is one-to-one (from Hom(£(g),£(OJ) into Hom(0;,£(Q)).

We observe that there is in general no essential difference among equivalent

objects nor among naturally equivalent functors. It is an easy consequence of the

above lemma that every reflector, £ : A -» B, is naturally equivalent to a functor

£': A ->B for which £'(6) = Ô whenever QeB. In addition one can require that

£' itself be a reflector and that the front adjunction map from Q into Q = F'(Q)

be the identity, lQ.

Definition. A reflector £: A -> B is in idempotent form if F(Q) =Q and eQ = 1Q

for all Q eB.

We have shown that every reflector is naturally equivalent to a reflector in

idempotent form. We observe that if £ is in idempotent form then £ is idem-

potent in the sense that £2 = £ on objects and morphisms. (The proof that £2 = £

for morphisms uses the fact that £2(/)eQ = ePF(f) if £(/) e Hom(ß, P).)

2. Pullback stripping functors (P. S. F.'s). In this section we shall introduce

the notion of a pullback stripping functor (or P.S.F.). The point of defining

a P. S. F. lies in the ability to characterize those reflective functors £ for which

HF =H whenever H is a P. S. F.

2.1. Basic definitions. We recall that a functor H is called faithful iff

/,ge HomLY, Y) and H(f) = H(g) imply/ = g.

Definition. A category C is said to be fully powered if every indexed family

of objects of C has a category theoretic product in C.
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Definition. Let H: C-*R be a faithful functor. Let A be an object of R. The

category H~X(A) consists of all objects X of C for which H(X) = A and all

morphisms/for which H(f) = 1A.

Clearly, H_1(A) is a subcategory of C but is not necessarily a full subcategory.

Definition. Let H: C-> R be a faithful functor. Let X and Y be objects of C

with H(X) = A and H(Y) = B. An P-morphism/e Hoxn(A,B) is admissible from

XtoY if there exists a morphism g e Hom(X, Y) such that H(g) =fi

Note. If H: C -» R is faithful, then H ~ 1(A) is, for all A e R, a partially ordered

category (or one in which Hom(X,Y) always has at most one element). By

convention, X^Y means that (in H~1(A)) Hom(X, Y) ¥= 0 ■ Equivalently,

X ^ Y iff H(X) = H(Y) = A and 1A is admissible from X to Y, for some AeR.

Clearly if X ^ Y and Y rg X, then X and Y axe equivalent as objects of H~l(A).

We shall frequently use "X = Y" to mean that X ^ Y and Y ̂  X.

It is standard terminology to define a "small" category as one whose class of

objects is a set. By a skeleton M of a category C we mean a full subcategory for

which each object of C is equivalent to one and only one object of M. We are now

ready to make the most important definition of this paper:

Definition: Let C be a fully powered category. A faithful functor II: C->R is

a pullback stripping functor (or a P. S. F.) if:

1. Foreach.4e£v, the category H'1(A) is fully powered and has a small skeleton.

2. For each R-morphism feHom(A,B) and each YeH~l(B) there is a largest

object X in the partially ordered category H ~ l(A) such that/is admissible from X

to Y. (X is clearly determined up to an H~l(A) equivalence.) X is the/-pullback

of Y and is denoted by X =f°(Y).

3. g°f°(Y) =(fg)°(Y), when defined.

For the remainder of §2 we shall assume H : C -» R is a P. S. F.

Remarks.   (Let. H: C -» R be a P. S. F.) We then observe that:

1. / is admissible from X to Y iff X £f°{Y). For if X á/°(Y) and A = H(X)

then 1¿ is admissible from X to/°(Y) and so/=/l,j is admissible from X to Y.

2. The pullback function f° : H~1(B)->H~X(A) is order preserving, in the

sense that/°(Y) g/°(Z) if Y ̂  Z.

3. If/ = 1A then/0: ri'^^-^H"1^) is the identity function.

4. In a partially ordered category, the notion of product turns out to be equiv-

alent to the notion of greatest lower bound. Hence a small, partially ordered

category is fully powered iff it is a complete lattice. (Note that every "sup" is an

"inf" of upper bounds.) It follows that any skeleton of the category H~X(A) is a

complete lattice. It is suggestive to denote the H~X(A) category product of an

indexed family of objects, {X¡}, by /\X¡. Of course this "/\-product" is defined

iff there is some A with H(X¡) = A for all i.

5. We further note that every class (and not only every set) of objects in H~i(A)

has a greatest lower bound (because H " l(A) has a skeleton which is a set, etc.).
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We shall denote the greatest lower bound of a class, Z Ç H~1(A), by /\Z. Setting

Z = H~1(A) and Z = 0, we see that H~ 1(A) has minimal and maximal elements.

6. The category R is fully powered. (We shall indicate the proof. Let {A¡} be an

indexed family of objects of R. Let X¡ be minimal in H~1(A) for all i. Since C is

fully powered, the product JTX; exists together with projections py. fj X¡ -* X¡

for each j. It can be shown that H(Y\ X) together with projections H(pf) is a

product in R for the family {A¡})

We shall write Y\A¡ = H(]JX) and q} = H(pf).
2.2. The f\-product and the \~\-product. In this section we shall relate the

[^-product to the /\-product and vice versa. To this end we shall let {X,-} be an

indexed family of objects of C. We shall set H(X) — A¡, for all i, and set B = \\ A¡

with projections H(p¡) = q¡:B^>A¡. It follows that q°(Xt)eH~1(B) for all i.

Theorem 2.1. Y\X¡ = /\q?iX).

Proof. Since g¡ = Hip), q¡ is admissible from \\ X¡ to X¡. Thus in view of

remark 1 of the previous section, J"] X¡ z% qf(X¡). Since this is true for all i,

On the other hand, for each j, A q?(X) = qjiXf) and hence (by remark 1 again)

gj is admissible from A qt(X)to X¡ • Thus, q}=Hisf) for some Sj : f\ q¡°iX¡)->Xj.

Moreover, since Y[ X¡ is a product, there is a unique s : A »2i0(Xf) -> Yl X¡ for

which PjS=Sj. Setting m = His), we obtain A-Z?(X¡) ̂  m°P[Xf) as m is ad-

missible. We claim that m = lfl, which in view of remark 3 of the previous section,

completes the proof. Observe that qym = q¡ as Hipjs) = H(sy). Since the qfs are

projections, the equations qjlB = Oj uniquely characterize 1B so m = lB.

We shall next assume that A X¿ is well defined, and hence that there is some A

with {X¡} ̂ H~\A) (i.e., H(X¡) = 4, = A for all Q. Since ¡\Xi^Xj there is a

morphism, d¡ : [\XX-^X¡, which belongs to the category .fi_1L4) (or such that

Hidj) = lA). In fact, the d/s are the projections associated with the A-Pr°duct.

Since PJ Xj is a product, there is a morphism d: f\ X¡ -» ]J Xf such that pxd = d¡

for all i. We shall set d = Hid). Note that d: A-+B. The maps d and d will be

called diagonal maps.

Theorem 2.2. f\X¡ =d°Y[X¡ (i/d is the diagonal map defined above).

Proof, d is admissible from AX¡ to I~Ixi as d = H(^)and soA^i^ d° ]1 Xi-

On the other hand, Theorem 2.1 implies T7X¡ ^ q0jiXf) and hence, as d° is order

preserving, d0Y\Xi-^d0q%Xf).   But in view of the  definition  of a P.S.F.,

d°q%Xj)=iqjdfXj = Xj   since    qjd = lA   (i.e.,    q¡d = Hipjd) = Hidf) = \jL).
Thus d°nx¡ g X, for all; and so d0Y\X¡ z% /\Xt.

2.3. H-reflectors.

Definition. Let H: C->R be a P. S. F. A reflector £: C-*P is an H-reflector

if f is in idempotent form and H F = H on objects and morphisms.
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If such an H-xeñectox, F, exists then P is an H-reflective category and is the

fixpoint class of £.

Remark. Let F:C^P be an //-reflector. Let XeH~\A). Then

HF(X) = H(X) = Aso F(X)eH-\A). Obviously e*x(F(ex)) = F(ex)ex = eF(X)ex

= ex = et(lFIX)) and so F(ex) = lnxy Moreover, H(ex) = HF(ex) = 1A. Hence

ex is a morphism of H~X(A) so X ^ £(X). We have shown that F is "increasing"

on H~\A).

It is also clear that F is order preserving on H'1(A). For if X ^ Y, there is an

fe Hom(X, Y) for which //(/) = 1A. Therefore //£(/) = H(f) = 1A and £(/) is a

morphism of H~l(A) which indicates that £(X) ^ £( Y).

Theorem 2.3. A functor F: C->C is an H-reflector iff:

(1) F is idempotent on objects (i.e., F(F(X)) = F(X)for all XeC).

(2) HF = H on objects and morphisms.

(3) £ is increasing in the sense that X ^ F(X)for all XeC.

Proof. In view of the above remark every //-reflector satisfies the three con-

ditions. Conversely, assume that £ satisfies (1), (2) and (3). Let XeH~1(A) be

arbitrary. £(X) e H ~ ' (A) and X ^ £(X) and so there is a map ex e Horn (X, £(X))

such that H(ex) = 1A. Let P be the full subcategory generated by the range of f.

If QePthen £(ß) = Q and eQ = lQsince H(eQ) = H(1Q) and H is faithful.

We claim that iffe Hom(X, Y) then F(f)ex = eYf. But H(F(f)ex) = HF(f)H(ex)

= HF(f) = H(f) = H(er)H(f) = H(eYf). The claimed equation follows since H is

faithful. Moreover, if Ye P then eY = 1, and so/ = F(f)ex = e*F(f) proving that

e% maps Hom(£(X),Y) onto Hom(X, Y). Finally if / = e|(g) = gex then

//£(/) = //(/) = H(g) and hence g = £(/) and so e* is one-to-one. It follows that

f is an //-reflector.

2.4. H-reflective categories. It is easy to show that if P is //-reflective then the

replete full subcategory generated by P is also //-reflective. We shall restrict our

attention to those //-reflective categories which are replete in C.

Definition. Let £ be a full subcategory replete in C. Then P is a pullback

category iff°(Q)eP whenever QeP and/°(ß) is meaningful.

Definition. A category Pis /\-productive if QiePC\H-1(A) for all i implies

AßieP-
P is Y\-productive if Q¡ e P for all i implies FjQ£ e T'.

In view of Theorems 2.1 and 2.2, a pullback category P is /\-productive iff it is

f^-productive. Such a category is a productive pullback category.

Theorem 2.4. // P is an H-reflective category, replete in C, then P is a pro-

ductive pullback category.

Proof. Let F:C->P be the associated //-reflector. Suppose that QeP and

f°(Q) is meaningful. Since / is admissible from f°(Q) to Q, f = H(g) for some
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g-f°(Q) -» ß- Hence F(g): F(f°(Q))->Q and since HF(g)=f,f is admissible from

F(f(Q)) to Q. Hence F(f°(Q)) éf°(Q), and so £(/°(ß)) =f°(Q) as £ is increasing.

Thus f°(Q) e P and P is a pullback category.

It suffices to show that if Q¡e P n H'1 (A)for all i then f\QieP. Since £ is order

preserving £(A6¡) è F(Q¡) = Q¡ for all i and so £(Aß;) =i Aß;- Hence

F(AQi) = /\Qi,and AQteP.

Theorem 2.5. If P is a productive pullback category then P is an H-reflective

category.

Proof. Let X e C be arbitrary with A = H(X). In view of remark 5 of §2.1 we can

define F(X) = ¡\{Q eH-\A) \ X g Q and Q e P}. It is easy to verify that Xe P iff

X = £(X) and that £ is increasing and idempotent (i.e., X ^ £(X) = £(£(X))).

Next, consider an arbitrary geHom(X, Y). Since / = H(g) is admissible,

X úf°(Y), hence X^/°(£(Y)) as/0 is order preserving. But/°(£(Y))gP and

so by the construction of £ it follows that £(X) rg/°(£(Y)). Therefore / is ad-

missible from £(X) to £(Y) and hence/ = H(h) for a unique h e Hom(£(X),£(Y)).

Clearly f can be regarded as a functor from C onto P if we define F(g) = h. By

Theorem 2.3, £ is an //-reflector and so P is an //-reflective category.

2.5. Maximal objects and maximal subobjects. In this section we shall

sharpen the criterion for reflectivity given in Theorems 2.4 and 2.5.

Definition. XeC is a maximal object ifXis maximal in the partially ordered

category H~\A), where A = H(X).

Definition. Y is a maximal subobject of X iff Y =/°(X) for some monic

(i.e.,  left-cancellable) morphism/ of P.

Definition. A full subcategory P ofCis H-maximal if XeP for all maximal

objects X.

P is H-hereditary if P is closed under the formation of maximal subobjects.

Lemma 2.6. If X is a maximal object thenf°(X) is also maximal.

Proof. X = f\ 0 (the /\_Pr°duct over the null set) since X is maximal. By

Theorem 2.2, X = d°T\0 hence/°(X) = (dff[\0. Since df is also a diagonal

map, (df)°Y[0 = A 0 and this is maximal.

Lemma 2.7. Let P be a Y\-productive, H-maximal subcategory of C. Let

Qj'- T[Ai-> Aj be a projection of R. IfQePandH'Q) = A j then q°j(Q)e P.

Proof. Let X; be maximal in H~1(A¡), for all i #/ Let X} = Q. Then X¡e P for

all i so YlXieP- In view of Theorem 2.1, fl^ = A<?°(*¡) = ?,°(ß) since c/°(X,-)
is maximal for all i # j.

Clearly, every //-reflective category is Ff-productive, //-hereditary and H-

maximal (since every maximal object is equivalent to a A-product over the null set).

For certain categories R, the converse is true as we shall demonstrate.
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Definition. A category R is decomposable if each morphism h of R is a com-

position, either n = q¡f or n =fq¡, of a projection o^- : I^X^X, and a monic

morphism /

Theorem 2.8. Let H.C^R be a P. S. F. for which R is decomposable.

A replete full subcategory P of C is H-reflective iff P is Y[-productive, H-hered-

itary and H-maximal.

Proof. It suffices to show that if P is ^[-productive, //-hereditary and H-

maximal then P is a pullback category. Assume QeP and h°(Q) is well defined.

Since R is decomposable we may as well assume that h = q¡f, where / is monic

and q¡ is a projection (a similar proof works for h =fqf). Then h°(Q) = (qjf)°Q

=/°(</°(ß))- By Lemma 2.7, a°(2)eP. Since P is //-hereditary/0(g°(ß)) e P.

3. Specific examples of P. S. F.'s and applications. In this section we shall

exhibit four P. S. F.' swhich will be denoted by s', s, H and J. By applying the

theorems of §2, we shall obtain proofs of our main results (Theorems A, B, C

and D). Some concluding observations concerning uniform spaces and other

categories will be included in this section.

3.1. The functor s: T-> S. We let S denote the category of sets and functions.

If iA,L) is a topological space we define s(A,L) = A. If /: (A,L)-*iB,M) is

continuous we define s(f) =/. It is entirely straightforward to show that s is a

P. S. F. The main steps in the verification are:

(1) A function is admissible iff it is continuous.

(2) (A,L)z%(A,M) iff lA maps (A,L) continuously onto (A,M) iff L^M.

Hence the partially ordered category s~l(A) is equivalent to the complete lattice

of all topologies on the set A (with the opposite of the usual ordering). Thus

s_1(/4) is well powered.

(3) If/: A-*B is a function and if M is a topology on B then f°(B,M) =(A,L),

where L = {V^A\ V =f~l(U) for some UeM}.

It is easy to show that / : A -* B is monic in S iff/ is one-to-one. If / is monic

then f°(B,M) is easily shown to be homeomorphic to the relative topology in-

duced by M on f(A). Hence the s-hereditary replete full subcategories are the

hereditary ones. It is also clear that the s-maximal objects are the indiscrete spaces.

Since S is a decomposable category, Theorem 2.8 is applicable. Theorem B

thus reduces to the statement that £ is a simple reflector iff £ is equivalent to an

s-reflector. But this is obviously the case for if ex : X -» £(X) is one-to-one and

onto then s(ex) is an equivalence in S between s(X) and s(F(X)). Hence we may

as well assume that s(X) — s(F(X)) and that s(ex) = lsiX).

3.2. The functor s': T'-*S'. We shall let T" denote the category which

is the opposite (or dual) of T and let S' denote the opposite of S. We define

s': T"-*S' by setting s' = s on objects and maps. The main steps in showing

that s' is a P.S. F. are:
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(1) An S'-morphism/is admissible from X to Y iff/is a continuous function

from Y to X .

(2) 04, L) g (A, M) iff 1A maps (A,M) continuously onto (A,L) iff L ^ M.

Hence the category (s')~ ' (A) is the opposite of s~ l(A) and is therefore equivalent

to the complete lattice on all topologies on the set A, with the usual ordering Ç .

(3) Let /be an S' morphism from A to B, then/: B^>A is a function. Let

(B, M) be given. Using/0 for the s'-pullback, we have/0(B, M) =(A,L), where

L = {V<=A\ f~\V)eM}.
We observe that / is monic in S' iff / is onto. If / maps B onto A and if

f0(B, M) = (A, L) then L is the quotient topology on A induced by / and M.

Hence the s'-hereditary properties are the divisible ones. It is clear also that

the s'-maximal objects are the discrete spaces.

It is easy to show that S' is decomposable and that G: £->P is cosimple iff

G is equivalent to an s'-reflector. Hence, in view of Theorem 2.8, Theorem A

reduces to the following two lemmas.

Lemma 3.1. A nontrivial, divisible and coproductive topological property P

contains all discrete spaces.

Proof. Since P is nontrivial and divisible, P contains one-point spaces. Every

discrete space, however, is equivalent to a coproduct of one-point spaces.

Lemma   3.2.    Every coreflective functor, G: T-+ P, is cosimple, if P is nontrivial

Proof. It is easy to show that P must be nontrivial. Let QeP be an object

for which 5(g) # 0. Let e = e^ : G(X) -* X be an arbitrary end adjunction map.

Assume that e(a)=s(b) with a#i>. Define /: Q -» G(X) by f(q) = a for all

q e Q and define g: Q -> G(X) by g(q) = bfoxallqeQ. Then (e)#g - eg = ef = s*f

a contradiction, showing e is one-to-one.

Next assume that x $ e(G(X)). Then if h : Q -* X is defined by h(q) = x for

all q it is clear that h # E%(m) for any m e Hom(ß, G(X)). This contradiction

shows £ is onto.

3.3. The functor H: C->S. The P. S. F. constructed in this section shall be

used to prove Theorem C. We need the following definitions.

Definition. The identification category, C, has for objects the class of all

ordered triples (A,e,X), where A is a set, X is a topological space and e is a

function mapping A onto X (or more precisely, perhaps, e maps A onto s(X)).

A morphism g: (A,e,X)->-(B,f, Y) is a function from A into B for which

there exists a continuous map g:X->Ysuch that ge=fg. (g is determined

by g since e is onto and hence right-cancellable.)

Definition. H: C-+S is the functor for which H(A,e,X) = A and H(g) =g.

The main steps in showing that H is a P.S.F. are:

(1) (A, e, X) ^ (A,f Y) iff 1A is admissible iff there exists a continuous func-

tion g: X -> Y such that ge = /.



1965]    REFLECTIVE FUNCTORS IN GENERAL TOPOLOGY AND ELSEWHERE    313

(2) The pullback map is defined as follows: Let g: A-*B be a function and

let (B,f, Y)eC. Define e =fg. Let X be the space having the relative topology

on eiA) £ Y. Clearly iA, e,X)eC and g is admissible from iA, e,X) to (£,/, Y).

Moreover, if g is also admissible from iA,e',X') to (£,/, Y) then there exists a

g: X'-» Y such that ge' =fg = e. Since e' is onto, g(X') çL Thus iA,e', X')

i%(A,e,X) and so we are justified in setting (A,e,X) = g°(B,f,Y).

(3) H~\A) has a small skeleton for all sets A. For if iA,e,X)eH~xiA) then

the cardinal of the set s'X) is bounded as e is onto. Hence there is a limit to the

number of topologically distinct spaces X for which iA,e,X) can be in H~*iA).

For each such space X there is a limited number of maps e : A —> X and hence

the cardinal of any skeleton of //-'(yl) is bounded.

(4) C is fully powered with Y\iA¡,ei,Xt) =iA,e,X), where ^4 = Y\A¡ and

X =n^¡ (with tne product topology), e is the map for which e^i = pxe, where

p¡: X->X; and q¡: A^>A¡ are the projections in the categories Tand S.

(5) The A-product on H~liA) is given by the formula which appears in the

statement of Theorem 2.2.

We note that iA,e,X) is //-maximal iff X is a one-point space.

Proof of Theorem C. We shall sketch the proof. Let £ : T-> P be an identi-

fying reflector. Let F be the full subcategory of C generated by all objects iA, e, X)

for which X e P. We define a reflector F: C ->P by setting FiA, e, X) =(4, exe,FiX)),

where ex: X-»£(X) is the front adjunction map which is onto. It can easily be

shown that if g is admissible from (A, e, X) to (B,f, Y) then g is still admissible

from F(A,e,X) to F(B,f Y). Hence F can be regarded as a functor from C to

F for which H F = H. In view of Theorem 2.3, F is an //-reflector. Thus F is

productive and //-hereditary implying that P is productive and hereditary (assu-

ming P is replete).

Conversely, let P be a hereditary and productive topological property. Then,

using the above definition, F is a productive pullback subcategory of C. (Pro-

ductivity of F follows from (4) above and pullbacks from (2). Hence, applying

Theorem 2.5 there is a //-reflector F:C-+ F.

We can now define a reflector F:T->P. Let X=(^4,L)eT. Then

(A,lA,X)eC. Let F(A,lA,X)=(A,ex,Y) and set £(X) = Y. The maps

ex: X -* FiX) are continuous and onto and they set up a front adjunction show-

ing that £ is an identifying reflector. Hence P is an identifying category.

3.4.    The functor J: E-^S.

Definition. The embedding category, E, has for objects the class of all ordered

triples (A, e, X) for which A is a set, X is a Hausdorff space, e is a function from

A into X and e(A) is a dense subset of X. A morphism g: (A,e,X)-+(B,f,Y)

is a function from A into B for which there is a continuous map g: X-> Y such

that ge =fg. We note that g is uniquely determined on e(A) and since Y is Haus-

dorff, g is uniquely determined on all of X.

Definition. J: £->S is the functor for which J(A,e,X) =A and J(g) =g.
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The main steps in showing that J is a P. S. F. (cf. §3.3) are:

(1) (A,e,X) <; (A,f, Y) iff there is a continuous g: X -> Y such that ge =/.

(2) Let g: A -> B be a function and let (£,/, Y) e C. Define e =/g. Let X be

the space having the relative topology on the closure of e(A). Then

f(B,f,Y) =(A,e,X).
(3) J X(A) always has a small skeleton. For if (A,e,X)e J~1(A) then the

cardinal of X is bounded since X is Hausdorff and has a dense subset, e(A), of

cardinal no greater than the cardinal of A. The argument used for H~l(A) in the

previous section now applies.

(4) £ is fully powered with \\(At, et, X,) = (A,e,X), where X = Y\X¡, etc.

(i.e., with the same construction as in §3.3).

(5) The A-product on J~1(A) is given by the formula which appears in

Theorem 2.2.

Proof of Theorem D. If P is an embedding property, we then let P denote

the full subcategory of £ containing all (A,e,X) for which XeP. It is easy to

show that P is a J-reflective category and hence is productive and J-hereditary

(cf. §3.3). In view of (4) and (2), P is productive and closed-hereditary.

Conversely, if P is productive and closed-hereditary then P is a productive

pullback subcategory of £. Hence there is a J-reflector; F: £ -> P. We now

let T2 be the full subcategory of T containing all Hausdorff spaces. Then

X=04,L)eT2 iff (A,lA,X)eE. We can clearly define £: T2 -* P so that

F(A, 1,4, X) =(A,e, F(X)). Moreover, in view of Theorem C there is an identi-

tifying reflector G: T->T2 since T2 is hereditary and productive. FG: T-»P is

then an embedding functor.

3.5. Uniform spaces. If U denotes the category of uniform spaces and uni-

form maps then the forgetful functor from U -> S is a P. S. F. Hence the analogue

of Theorem B holds for uniform properties. By using constructions of the type

found in §§ 3.2, 3.3 and 3.4, one can show that the analogues of Theorems A, C

and D also hold for U. The subcategory of all totally bounded (or precompact)

uniform spaces is a simple reflective property. The complete and the compact

uniform spaces both form embedding properties. The composition of the totally

bounded reflector followed by the completion functor gives the Samuel uniform

compactification, which is examined in [9].

3.6. Analogous results. Some analogous results concerning the existence of

reflectors may be found in the exercises of [3] starting on p. 74. Some of these

results are category theoretic versions of theorems about universal algebra proved

by Garrett Birkhoff (see [1]).

Theorem D recalls another early result of Mr. Birkhoff's. In [2], he shows,

in effect, that for certain general types of reflectors f : A -» B the morphism ex

can be regarded as a function continuously mapping "X" onto a dense subset of

"£(X)" (i.e., there is a forgetful functor H: A->S and £ induces a closure oper-
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at or on H(X) for each object XeA). Conversely, certain closure operators give

rise to reflectors. In the category of completely regular Hausdorff spaces the

topological closure operator gives rise to the Stone-Cech compactification.
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